2。Stewart JC,Flach A.(2015)。充分利用每次重复。神经物理疗法杂志,39(1),31-32。书籍第1章Winstein CJ,Stewart JC。(2006)。具有神经系统障碍的人的任务练习条件。in:神经修复和神经植物的教科书。医学神经康复(Eds Selzer M,Clark S,Cohen L,Duncan P,Gage F),剑桥大学出版社,剑桥,89-102。同行评审的会议论文1。Stewart JC,Gordon J,Winstein CJ。(2008)。使用虚拟环境来调查中风后不受限制的触及行动的计划:一项可行性研究。Virtual Rehabilitation 2008,加拿大温哥华,13-21。
2。Stewart JC,Flach A.(2015)。充分利用每次重复。神经物理疗法杂志,39(1),31-32。书籍第1章Winstein CJ,Stewart JC。(2006)。具有神经系统障碍的人的任务练习条件。in:神经修复和神经植物的教科书。医学神经康复(Eds Selzer M,Clark S,Cohen L,Duncan P,Gage F),剑桥大学出版社,剑桥,89-102。同行评审的会议论文1。Stewart JC,Gordon J,Winstein CJ。(2008)。使用虚拟环境来调查中风后不受限制的触及行动的计划:一项可行性研究。Virtual Rehabilitation 2008,加拿大温哥华,13-21。
态势感知 (SA) 已经取代传统的“方向舵和操纵杆”技能,成为空战中取胜的主要因素 (Endsley,1995;Svenmarckt 和 Dekker,2003)。态势感知通常被定义为一个人对当前状况的感知 (SA 级别 1)、对当前状况的理解 (SA 级别 2) 和对近期事件的预测 (SA 级别 3) 的三级结构 (Endsley,1995)。态势感知作为一个概念可能是有争议的。例如,Dekker 和 Hollnagel (2004) 将该概念描述为“民间模型”,并采用还原论方法,认为态势感知可以分解为可测量的具体组成部分 (例如决策、感知、理解和长期记忆)。他们还认为,态势感知不容易被证伪 (另见 Flach,1995)。即使承认 SA 确实存在,该概念的科学性仍有待商榷。例如,它存在于用户的认知中,还是更广泛系统的突发属性,以及最合适的测量方法是什么(有关更多详细信息,请参阅 Salmon 等人,2008 年;Endsley,2015 年;Stanton 等人,2017 年;Nguyen 等人,2019 年的广泛评论)?尽管如此,很明显,SA 的概念已成为评估系统和人类表现的重要指标。正如 Wickens (2008) 指出的那样“……人们可以说,该构造在理论和应用中的使用增加证明了
态势感知 (SA) 已经取代传统的“方向舵和操纵杆”技能,成为空战中取胜的主要因素 (Endsley,1995;Svenmarckt 和 Dekker,2003)。态势感知通常被定义为一个人对当前状况的感知 (SA 级别 1)、对当前状况的理解 (SA 级别 2) 和对近期事件的预测 (SA 级别 3) 的三级结构 (Endsley,1995)。态势感知作为一个概念可能是有争议的。例如,Dekker 和 Hollnagel (2004) 将该概念描述为“民间模型”,并采用还原论方法,认为态势感知可以分解为可测量的具体组成部分 (例如决策、感知、理解和长期记忆)。他们还认为,态势感知不容易被证伪 (另见 Flach,1995)。即使承认 SA 确实存在,该概念的科学性仍有待商榷。例如,它存在于用户的认知中,还是更广泛系统的突发属性,以及最合适的测量方法是什么(有关更多详细信息,请参阅 Salmon 等人,2008 年;Endsley,2015 年;Stanton 等人,2017 年;Nguyen 等人,2019 年的广泛评论)?尽管如此,很明显,SA 的概念已成为评估系统和人类表现的重要指标。正如 Wickens (2008) 指出的那样“……人们可以说,该构造在理论和应用中的使用增加证明了
态势感知 (SA) 已经取代传统的“方向舵和操纵杆”技能,成为空战中取胜的主要因素 (Endsley,1995;Svenmarckt 和 Dekker,2003)。态势感知通常被定义为一个人对当前状况的感知 (SA 级别 1)、对当前状况的理解 (SA 级别 2) 和对近期事件的预测 (SA 级别 3) 的三级结构 (Endsley,1995)。态势感知作为一个概念可能是有争议的。例如,Dekker 和 Hollnagel (2004) 将该概念描述为“民间模型”,并采用还原论方法,认为态势感知可以分解为可测量的具体组成部分 (例如决策、感知、理解和长期记忆)。他们还认为,态势感知不容易被证伪 (另见 Flach,1995)。即使承认 SA 确实存在,该概念的科学性仍有待商榷。例如,它存在于用户的认知中,还是更广泛系统的突发属性,以及最合适的测量方法是什么(有关更多详细信息,请参阅 Salmon 等人,2008 年;Endsley,2015 年;Stanton 等人,2017 年;Nguyen 等人,2019 年的广泛评论)?尽管如此,很明显,SA 的概念已成为评估系统和人类表现的重要指标。正如 Wickens (2008) 指出的那样“……人们可以说,该构造在理论和应用中的使用增加证明了
KS Corbett、B. Flynn、KE Foulds、JR Francica、S. Boyoglu-Barnum、AP Werner、B. Flach、S. O'Connell、KW Bock、M. Minai、BM Nagata、H. Andersen、DR Martinez、AT Noe、N. Douek、MM Donaldson、NN Nji、GS Alvarado、DK Edwards、DR Flebbe、E. Lamb、NA Doria-Rose、BC Lin、MK Louder、S. O'Dell、SD Schmidt、E. Phung、LA Chang、C. Yap、J.-PM Todd、L. Pessaint、A. Van Ry、S. Browne、J. Greenhouse、T. Putman-Taylor、A. Strasbaugh、T.-A. Campbell、A. Cook、A. Dodson、K. Steingrebe、W. Shi、Y. Zhang、OM Abiona、L. Wang、A. Pegu、ES Yang、K. Leung、T. Zhou、IT。 Teng、A. Widge、I. Gordon、L. Novik、RA Gillespie、RJ Loomis、JI Moliva、G. Stewart-Jones、S. Himansu、W.-P。 Kong、MC Nason、KM Morabito、TJ Ruckwardt、JE Ledgerwood、MR Gaudinski、PD Kwong、JR Mascola、A. Carfi、MG Lewis、RS Baric、A. McDermott、IN Moore、NJ Sullivan、M. Roederer、RA Seder 和 BS Graham
机器学习 (ML) 正在改变着工业、科学和社会。如今,ML 算法可以在理发店预约(Leviathan 和 Matias,2018 年)、根据蛋白质的氨基酸序列确定其 3D 形状(Senior 等人,2020 年),甚至可以撰写新闻文章(Brown 等人,2020 年)。仔细观察这些发展,我们发现模型越来越复杂。不同的 ML 模型以启发式方式堆叠在一起,但理论支持有限(Hutson,2018 年)。在某些应用中,只要算法在大多数情况下表现良好,复杂性可能就不是问题。然而,在社会、认识论或安全关键领域,复杂性可能会排除 ML 解决方案——例如自动驾驶、科学发现或刑事司法。高度复杂算法的两个主要缺点是模糊性问题(Lipton,2018 年)和对抗性攻击(Szegedy 等人,2014 年)。模糊性问题描述了人类对 ML 算法内部运作的有限认知访问,尤其是关于参数的语义解释、学习过程和 ML 决策的人为可预测性(Burrell,2016 年)。这种可解释性的缺乏最近引起了广泛关注,从而催生了可解释人工智能 (XAI) 领域的发展(Doshi-Velez 和 Kim,2017 年;Rudin,2019 年)。人们提出了许多技术来深入了解机器学习系统(Adadi 和 Berrada,2018 年;Doˇsilovi´c 等人,2018 年;Das 和 Rad,2020 年)。与模型无关的方法尤其受到关注,因为与特定于模型的方法不同,它们的应用不限于特定的模型类型(Molnar,2019 年)。全局与模型无关的解释技术(如置换特征重要性(Fisher 等人,2019 年)或部分依赖图(Friedman 等人,1991 年))旨在理解机器学习算法的一般属性。另一方面,局部模型无关解释方法(如 LIME(Ribeiro 等人,2016 年)或 Shapley 值(ˇ Strumbelj 和 Kononenko,2014 年))旨在理解算法在特定区域的行为。解释特定模型预测的一种方法是反事实解释 (CE)(Wachter 等人,2017 年)。CE 通过提供最接近的替代输入来解释预测,该输入将导致不同的(通常是期望的)预测。CE 是我们在本文中研究的第一类对象。对抗性攻击问题描述了这样一个事实:复杂的 ML 算法容易受到欺骗(Papernot 等人,2016a;Goodfellow 等人,2015;Szegedy 等人,2014)。攻击者可以利用此类故障来伤害模特雇主或危及最终用户(Song 等人,2018)。研究对抗性攻击的领域称为对抗性机器学习(Joseph 等人,2018)。如果攻击发生在训练过程中,通过插入错误标记的训练数据,这种攻击称为投毒。如果攻击发生在训练过程之后,通常称为对抗性示例 (AE)(Serban 等人,2020 年)。AE 是类似于真实数据但被训练过的 ML 模型错误分类的输入,例如,乌龟图像被归类为 rière(Athalye 等人,2018 年)。因此,错误分类在这里意味着算法与某些(通常是人类给出的)基本事实相比分配了错误的类别/值(Elsayed 等人,2018 年)。AE 是与我们的研究相关的第二类对象。尽管不透明度问题和对抗性攻击问题乍一看似乎毫无关联,但仍有充分的理由联合研究它们。 AE 显示了 ML 模型失败的地方,检查这些失败可以加深我们对模型的理解(Tomsett 等人,2018 年;Dong 等人,2017 年)。另一方面,解释可以阐明如何改进 ML 算法,使其对 AE 更具鲁棒性(Molnar,2019 年)。缺点是,解释可能包含有关模型的太多信息,从而允许构建 AE 并攻击模型(Ignatiev 等人,2019 年;Sokol 和 Flach,2019 年)。CE 与 AE 的联系比其他解释更强。CE 和 AE 可以通过解决相同的优化问题 1 来获得(Wachter 等人,2017 年;Szegedy 等人,2014 年):