能够自我维持定向运动的人工系统在开发许多具有挑战性的应用方面具有很高的兴趣,包括医疗和技术应用。在合成生物学的背景下,自下而上地组装这样的系统仍然是一项具有挑战性的任务。在这里,我们通过将光可切换的光合囊泡与脱膜鞭毛相结合,展示了人工光驱动能量模块和运动功能单元的生物相容性和效率,从而在光照时为运动蛋白分子马达提供 ATP。鞭毛推进与其拍打频率相结合,光能触发的 ATP 动态合成使我们能够根据光照控制鞭毛的拍打频率。与不同的生物构件(如生物聚合物和分子马达)相结合的光能功能化囊泡可能有助于自下而上地合成人工细胞,这些细胞能够经历马达驱动的形态变形并以光可控的方式表现出定向运动。
基因工程沙门氏菌伤寒沙门氏菌是针对病原体和癌症的预防性和治疗方法的有效载体。这是基于支持强烈免疫反应的有效辅助性。沙门氏菌的生理学知之甚少。它简化了增强的免疫刺激特性和安全特征的工程,因此,在临床应用中衰减和效率之间达到了适当的平衡。沙门氏菌的主要毒力因子是脂脂。它也是一种与宿主免疫细胞的细胞外和细胞内受体识别的强烈病原体相关的分子模式。同时,它代表了严重的代谢负担。因此,细菌进化了控制体内纤维合成的紧密调节机制。在这里,我们系统地研究了沙门氏菌在体外和体内小鼠癌模型中的各种链球菌突变体的免疫原性和辅助性。我们发现缺乏特异性ATPase Flihij或内膜环FLIF的突变体显示出最大的刺激能力和最强的抗肿瘤作用,同时在体内保持安全。扫描电子显微镜揭示了δ液和δ频IHIJ突变体中存在外膜囊泡。最后,δ液和δ-氟IHIJ突变与先前描述的衰减和免疫原性背景菌株SF 102的组合表现出对高度抗性癌细胞系Renca的强效。因此,我们得出的结论是,操纵叶叶菌的生物合成具有巨大的高度和多功能沙门氏菌载体菌株的巨大潜力。
摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
各种各样的微生物激发了它们行为的基本研究,有可能构建人工模仿。一个突出的例子是大肠杆菌细菌,它采用多个螺旋鞭毛表现出一种运动模式,在奔跑(方向游泳)和滚落型(游泳方向变化)相之间交替。我们建立了一个详细的大肠杆菌模型,该模型将耗散性粒子动力学方法描述为流体流,并研究其运行式行为。不同的大肠杆菌特征,包括身体几何形状,鞭毛弯曲刚度,鞭毛的数量及其在体内的排列。还进行了实验,以直接与模型合并。有趣的是,在模拟和实验中,游泳速度几乎与鞭毛的数量无关。钩子(将其直接连接到电机连接的鞭毛的短部分),鞭毛的多态性变换(鞭毛螺旋性的自发变化)的刚度以及它们在身体表面的排列强烈影响运行的行为。使用开发模型的中尺度流体动力学模拟有助于我们更好地理解支配大肠杆菌动力学的物理机制,从而产生与实验观察结果相比良好的运行式行为。该模型可以进一步用于探索大肠杆菌和其他细菌在更复杂的现实环境中的行为。
unit1:藻类(10lectures)引入和一般示例;生态和分布;范围thallusorganization; cellsstructureand组成部分;细胞壁,颜料系统,储备食品(仅在thellabus中代表的基团),鞭毛;改制方法;分类,标准,Systemoffritsch和evolut ionaryClassificationoflee,2008年(大纲);重要的企业企业企业家(F.E.Fritsch,G.M。 Smith,R.N。 Singh,T.V。 Desikachary,H.D。 kumar,M.O.P.Iyengar);藻类的角色Fritsch,G.M。Smith,R.N。 Singh,T.V。 Desikachary,H.D。 kumar,M.O.P.Iyengar);藻类的角色Smith,R.N。Singh,T.V。Desikachary,H.D。 kumar,M.O.P.Iyengar);藻类的角色Desikachary,H.D。kumar,M.O.P.Iyengar);藻类的角色
1。Leanne Airhienbuwa在3D Microtissues顾问中的三重阴性乳腺癌:David Wood赞助计划:BME Pathways Home Institution:Stony Brook University摘要:三层阴性乳腺癌(TNBC)是一种非常积极的乳腺癌形式,与其他类型相比,与其他化学治疗药物相比,乳腺癌的生存率较低。“阿霉素(DXR)是治疗三重阴性乳腺癌的最常用抗癌药物之一”(1)。我们的研究试图了解在3D微动物环境中处理TNBC细胞(HS578T)时DXR的影响。本研究中使用的微作用能够比球形更好地复制肿瘤微环境(2),因为我们可以创建和利用细胞外基质,从而使我们的模型在生理上更相关。通过利用这种3D环境,我们旨在预测药物反应,查看细胞周期调节的变化以及完全提取RNA,以了解发挥作用的遗传因素。为了完成我们的目标,我们制造了微局部,并用阿霉素和DMSO对其进行了处理。2天后,收集培养基样品以在M65 ELISA中进行研究。此外,将组织染色并成像以使细胞活力。在微作用之外,制造了大量凝胶以开始RNA提取的过程。总的来说,这项研究允许生理相关的模型了解阿霉素对三阴性乳腺癌的影响。2。为了更好地理解这种相互作用,我们正在设计一个实验性的宏观缩放模型的鞭毛束模型。3。jonathan auckenthaler在恒定扭矩顾问上对鞭毛旋转动力学的旋转动力学扩展实验模型:穆米塔·达斯古普塔(Moumita dasgupta),Xiang Cheng赞助计划:MRSEC家庭机构:Augsburg University摘要:像大肠杆菌一样的细菌被螺旋旗驱动的螺旋虫驱动的旋转型旋转型旋转状态所驱动的螺旋群驱动着,该旋转型的旋转良好,该旋转型的旋转态度是在旋转的情况下驾驶的旋转良好的态度。尽管已经进行了广泛的研究,但鞭毛的细菌游泳,但在复杂的流体动力学,弹性流体动力学和空间相互作用决定的捆绑中相互作用的集体动力学仍然尚未完全了解。目前,我们正在通过比例综合衍生型控制器(PID)测试拉丝直流电动机,以使用反馈回路实现恒定扭矩。试验,通过将均匀的圆柱连接到电动机上,并将其浸入充满高粘性液体的圆柱缸中,以在不同恒定电压下从不同的恒定电压下测量扭矩。这使我们能够使用COUETTE流的原理来计算电动机的扭矩,并且该数据将用于更好地调整我们的反馈回路。一旦实现,我们将使用粒子图像速度法以彼此不同的距离绘制两个模型鞭毛周围的流场,以在由恒定扭矩驱动的捆绑包中获得重要的见解。我们专注于Genai对写作的影响:跨学科的个人现在正在使用Genai来创造性和非创造性任务,例如撰写文章,求职信和申请表。Maryam Bacchus了解生成AI援助在基于写作的任务顾问中的影响:Harmanpreet Kaur赞助计划:以人为本的计算机家庭机构:Vassar College摘要:在2022年下半年公开发行Chatgpt之后,Generative AI(Genai)工具越来越多地嵌入了各种知识工作任务中(E.G. G.G. Gressing,编码),编码,编码,编码。但是,随着技术进步的快速发展,我们尚未完全意识到将Genai用于这些任务的影响。因此,我们考虑以下研究问题:(1)当人们使用AI辅助工具时,写作的过程和结局如何变化;(2)个性在多大程度上在这种行为中起作用?为了测试这些问题,我们进行了一项受试者内的试点研究,参与者完成了两项写作任务(没有AI辅助),并进行了简短的退出访谈。我们的结果表达了两个条件之间的写作过程的变化,对细节的关注以及个人的尽责性和同意的水平是否与他们的表现有关。