该系统的特点是“菱形”,实际上是“方点”形状。它识别材料的危害以及健康、易燃性和不稳定性危害的严重程度。危害严重程度用数字评级表示,范围从零 (0) 表示最小危害,到四 (4) 表示严重危害。危害在空间上的排列如下:健康在九点钟位置,易燃在十二点钟位置,不稳定性在三点钟位置。除了可用于区分危害的空间方向外,它们还按以下颜色编码:蓝色代表健康,红色代表易燃,黄色代表不稳定性。红色、蓝色和黄色的色调不受管制,但应为对比色。危害等级可能有彩色背景和对比色数字,或彩色数字和白色背景。 (参见 NFPA 704 第 4.1.5 节和图 9.1(a))
保持可持续性,材料必须丰富,便宜且无毒。毒性并不是唯一的安全问题。由于锂离子电池的易燃性引起的事件经常在媒体中报道。这些设备的易燃性通常与非水电解质有关。电解质也有助于毒性和高成本,部分原因是使用氟化盐。[2-5]解决这些缺陷对于钠离子蝙蝠特别是至关重要的,因为可持续性和安全性至关重要。幸运的是,有一个动力来解决电池中使用的电解质的易燃性质。减轻易燃性的一种常见策略是将有机磷化合物用作电解质溶剂。[6-12]有机磷化合物是多种应用中使用的常见火焰阻燃剂。[13]但是,其中几种化合物对环境和健康有负面影响。[14,15]
性质 值 备注 • 方法 熔点 / 凝固点 无数据 未知 沸点 / 沸程 (°C) 无数据 未知 可燃性 (固体、气体) 无数据 未知 空气中的可燃性极限 未知 可燃性上限: 无数据 可燃性下限: 无数据 闪点 无数据 开杯 自燃温度 无数据 未知 分解温度 未知 pH 无数据 未知 pH (水溶液) 无数据 无信息 运动粘度 无数据 未知 动态粘度 无数据 未知 水溶性 无数据 未知 在其他溶剂中的溶解度 无数据 未知 分配系数 无数据 未知 蒸气压 无数据 未知 相对密度 无数据 未知 堆积密度 无数据 液体密度 无数据 蒸气密度 无数据 未知 颗粒特性 颗粒大小 无信息 颗粒大小分布 无信息
今天,世界上每年发生了超过800万次大火,这些大火的主要部分,30-40%,即超过200万大火,与电力部门有关,在全球范围内约有3万人死亡。这主要是由于电缆绝缘材料缺乏防火和现有防火化合物的无效性。当然,今天有必要进行有关防止电缆中短路的研究,从而增加电缆绝缘的热阻力并将其充分定位。在全球电力部门的经验中,人们越来越多地注意火焰电缆,并确保建筑物和结构的消防安全仍然是紧急问题之一。降低聚合物的易燃性和易燃性程度并创建耐火(安全)材料是一个紧迫的问题,需要紧急解决方案,包括电缆行业。
特性 汽油 天然气 H 2 NH 3 可燃极限,空气中的体积百分比 1.4-7.6 5-15 4-75 16-25 自燃温度,o C 300 450 571 651 峰值火焰温度,o C 1977 1884 2000 1850
5. 光纤电缆 ................................................................................................................................................ 11 5.1 电缆类型 ................................................................................................................................................ 11 5.2 可燃性 - 电缆等级和标记 ................................................................................................................ 12 5.3 光纤电缆颜色代码 ................................................................................................................................ 12 5.4 安装光纤电缆 ...................................................................................................................................... 13 5.5 电缆设备硬件 ...................................................................................................................................... 15 5.6 电缆扎带的使用 ...................................................................................................................................... 15
期刊文章:Saraf,C.,Stubbs,E.,Hu,W.,Emrick,T.,Lesser,A。J.,结合了环氧网络中的机械防御能力和超低易燃性。巨摩尔。mater。eng。2020,2000567期刊文章:Karp,M.,Ochs,R.I。用于表征人造烟雾发生器的方法,用于标准化转移烟雾检测认证。Fire Technol(2020)网站:货物降低风险网站的发布,以吸收与飞机运输危险商品的危害,风险和缓解策略相关的信息。https://www.fire.tc.faa.gov/cargosafety演示文稿:干冰测试的初步结果,以支持Covid-19疫苗的安全发货, https://www.fire.tc.faa.gov/pdf/pdf/FAA_CO2_TESTS_01122021_FINAL_FINAL_FINAL_FOR_FOR_PUBLIC_RELEASE.PDFFAAFAA报告:Summer,Stumme,Steven M,Steven M,Steven M,燃油罐评估方法用户的手册 - 刊登杂志,刊登杂志,•杂志,杂志20.版本/dot/fa a dot/faa air:dot/faa cranig/faa cranig/faa ai•dot/faa: Richard E. Lyon,Natallia Safronava,Sean Crowley,Richard N. Walters,分子级火生长参数,聚合物降解和稳定性,第186、2021、109478卷,ISSN 0141-3910
Physical state : Solid Appearance : No data available Colour : Metallic Black Odour : Odourless Odour threshold : No data available pH : No data available pH solution : No data available Relative evaporation rate (butylacetate=1) : No data available Melting point / Freezing point : Freezing point: Not applicable Boiling point : No data available Flash point : No data available Auto-ignition temperature : No data available Flammability : No data available Vapour pressure : No data available Relative密度:无数据可用密度:无数据可溶解度:无数据可用日志功能:无数据可用的粘度,运动学:不适用爆炸性属性:无数据可用爆炸性限制:不适用的最小点火能量:无数据可用的脂肪溶解度:无数据可用数据可用数据可用
阻燃剂通常是为环氧树脂开发的,然后转移到其纤维增强的复合材料中,结果不确定。详细了解这种转移代表了一项关键的科学挑战。这项研究系统地将环氧树脂与玻璃纤维增强复合材料进行了比较,重点是双苯酚A二甘同甲醚与硬化剂二氯二酰胺,火焰粘贴剂三磷酸三磷酸,氨基磷酸氨基磷酸盐和硅烷芳基氨磷酸盐以及内磷酸盐以及内磷酸硅酸盐的硅酸盐。该研究研究了热解(热力计),易燃性(UL 94,限制氧指数)和火力行为(锥热量计)的变化,同时还检查了阻尼药的动作模式和整体火力性能。发现的结果表明,燃料,热性能,熔体流量和保护层的变化显着影响点火,易燃性和火负荷,并且在复合材料内的碳质炭急剧减少,以防止摄入量。这项研究量化了效果,并提供了对从树脂到复合材料的火焰阻燃剂的复杂转移过程的基本科学理解,提供了基本的见解,这些见解对于开发更有效的阻燃材料至关重要。