• 这些变化反映了不断努力提高运营效率 • 工业和电池市场由首席销售官统一领导 2025 年 2 月 3 日:北方石墨公司 (NGC:TSX-V, NGPHF:OTCQB, FRA:0NG, XSTU:0NG)(“公司”或“北方”)今天宣布对其高层管理团队进行战略重组,以提高运营效率,并使销售策略更好地与电池行业对石墨日益增长的需求保持一致。即日起,所有运营,包括公司的 Lac des Iles(“LDI”)石墨矿,将由 NGC 电池材料运营与工程副总裁 Maximilian Meier 统一领导。Meier 先生将担任临时首席运营官 (COO),接替在 Northern Graphite 工作两年后返回澳大利亚的 Kirsty Liddicoat。Northern 感谢 Liddicoat 女士对公司发展的奉献。与此同时,公司正在整合所有销售职能,由 NGC 电池材料总裁 Michael Grimm 领导,后者已被任命为首席销售官。此举确保了统一的方法,以服务传统工业客户,并在锂离子电池阳极材料市场以及下一代电池化学市场中寻求不断扩大的机会。Northern 对 Marco Zvanik 表示感谢,他已辞去全球销售副总裁一职,以寻求其他机会。“这些调整反映了我们更广泛的战略,即扁平化组织、降低复杂性,并增强我们快速响应快速发展的市场需求的能力,”首席执行官 Hugues Jacquemin 表示。“通过简化我们的结构,我们旨在将资源集中在最有影响力的地方,加强我们作为北美唯一石墨生产商的地位,并推动我们成为综合矿山到电池石墨供应商的目标。”精简的结构还使 Northern 能够有效地扩大其运营和销售规模,以反映不断发展的电动汽车和储能领域对石墨的不断增长的需求。全球石墨市场一直受到日益加剧的地缘政治动荡的影响,最近一波动荡始于 12 月,当时中国——石墨的主要生产国和加工国——对向美国出口实施了新的限制,并在随后的几周内持续,美国活性阳极材料生产商联盟由美国石墨公司组成,呼吁对从中国进口的用于制造锂离子电池阳极材料的天然和合成石墨征收高达 920% 的关税。进一步增加不确定性的是,美国总统特朗普在 1 月新任期开始时表示将取消关键的电动汽车激励措施,同时重新推动国内能源安全和关键矿产生产。雅克曼先生表示:“拥有一支整合的管理团队将帮助我们更好地应对这个不断发展的市场的不确定性,并确保我们能够为我们的工业客户提供服务,同时将我们的电池业务拓展到中国以外的全球市场。”
摘要:振动光谱是一种无处不在的光谱技术,可表征功能性纳米结构材料,例如沸石,金属 - 有机框架(MOF)和金属 - 卤化物 - 卤化物perov-Skyites(MHP)。所得的实验光谱通常很复杂,具有低频框架模式和高频功能组振动。因此,理论上计算的光谱通常是阐明振动指纹的重要元素。原则上,有两种可能的方法来计算振动光谱:(i)一种静态方法,将势能表面(PES)近似为一组独立的谐波振荡器,以及(ii)一种动态方法,通过整合牛顿运动的方程来将PES围绕PES明确采样。动态方法考虑了Anharmonic和温度效应,并在真正的工作条件下提供了更真实的材料的代表;但是,此类模拟的计算成本大大增加。在量子机械水平上执行力和能量评估时,这肯定是正确的。分子动力学(MD)技术在计算化学领域已变得更加建立。然而,为了预测纳米结构材料的红外(IR)和拉曼光谱,其用法的探索程度较低,并且仅限于一些孤立的成功。因此,目前尚不清楚哪种方法应使用哪种方法来准确预测给定系统的振动光谱。■简介迄今为止缺乏一系列广泛的纳米结构材料的各种理论方法与实验光谱之间的全面比较研究。为了填补这一空白,我们在本文中提出了一个简洁的概述,该方法适用于准确预测各种纳米结构材料的振动光谱,并为此目的制定一系列理论指南。为此,考虑了四个不同的案例研究,每个案例研究都治疗了特定的物质方面,即柔性MOF的呼吸,刚性MOF UIO-66中缺陷的表征,金属 - 卤化物 - 卤化物perovskite CSPBBR 3中的Anharmonic振动以及对访客的吸附以及对Zeolite H-Ssz-ssz-13的孔的吸附。对于所有四种材料,在其宾客和无缺陷状态以及在足够低温下的所有四种材料中,静态和动态方法在定性上与实验结果一致。当温度升高时,由于存在Anharmonic语音子模式,CSPBBR 3的谐波近似开始失败。此外,缺陷和来宾物种的光谱指纹通过简单的谐波模型很好地预测。两种现象都弄平了势能表面(PES),这促进了亚稳态状态之间的过渡,因此需要动态采样。(ii)当材料在较高的温度下评估或额外的复杂性进入系统时,例如,强烈的非谐度,缺陷或客人物种,谐波制度分解,并且需要动态抽样才能正确预测声子频谱。在本综述中处理的四个案例研究的基础上,我们可以提出以下理论指南,以模拟功能固态材料的准确振动光谱:(i)对于低温下的纳米结构的晶体框架材料,可以使用静态方法在低温下的洞察力,可以使用几个点依靠point of the points of points of point of point of points of point of points points points and points and points and points and points and pote。这些准则及其针对原型材料类别的插图可以帮助实验和理论研究人员增强从晶格动力学研究中获得的知识。
执行摘要拖把录像日期为20.03.2023的要求CEA制定电池电池电池电网(EV)的电网的指南。 因此,委员会是根据成员(GO&D)主席(CEA)构成的,日期为11.04.2023。 委员会在10.05.2023举行的第1次会议上要求分析电动汽车反向收费的各个方面,并将其呈现给委员会。 因此,小组委员会的会议于17.07.2023与来自IIT Bombay,IIT Delhi,IIT Roorkee,IIT Roorkee,BSES Rajdhani Power Limited(BRPL),EVSE和EVS OEM的参与者举行,以准备该报告,以准备该报告,以供汽车对网格(V2G)服务。 本报告简要概述了电动汽车可以通过智能充电,关键挑战和重要因素为电力系统提供的服务,以实现部署,实施要求和前进的方向,以使电动汽车在网格中平稳整合。 本报告着眼于双向V2G技术,并在整合更高的可再生能源方面的作用,同时为电网提供服务。 因此,本报告的主要目的是在分发网格的规划和操作中与EV充电基础架构的整合,即 可再生发电的成本降低使电力成为运输部门有吸引力的低成本燃料。 在电动汽车部署(EV)部署中的大量扩展也代表了电力部门的机会。 以来,包括电动汽车在内的汽车通常将其终生停放的80-90%。 因此,电动汽车舰队可以创造大量的电力存储能力。要求CEA制定电池电池电池电网(EV)的电网的指南。因此,委员会是根据成员(GO&D)主席(CEA)构成的,日期为11.04.2023。委员会在10.05.2023举行的第1次会议上要求分析电动汽车反向收费的各个方面,并将其呈现给委员会。因此,小组委员会的会议于17.07.2023与来自IIT Bombay,IIT Delhi,IIT Roorkee,IIT Roorkee,BSES Rajdhani Power Limited(BRPL),EVSE和EVS OEM的参与者举行,以准备该报告,以准备该报告,以供汽车对网格(V2G)服务。本报告简要概述了电动汽车可以通过智能充电,关键挑战和重要因素为电力系统提供的服务,以实现部署,实施要求和前进的方向,以使电动汽车在网格中平稳整合。本报告着眼于双向V2G技术,并在整合更高的可再生能源方面的作用,同时为电网提供服务。因此,本报告的主要目的是在分发网格的规划和操作中与EV充电基础架构的整合,即可再生发电的成本降低使电力成为运输部门有吸引力的低成本燃料。在电动汽车部署(EV)部署中的大量扩展也代表了电力部门的机会。以来,包括电动汽车在内的汽车通常将其终生停放的80-90%。因此,电动汽车舰队可以创造大量的电力存储能力。智能充电;电动汽车的电网支持服务,以促进大规模可再生能源整合;电动汽车充电基础设施与分销网格集成的技术和标准;电动汽车充电基础设施和与分布网格集成的政策和法规;确定印度电动汽车充电基础设施的有效,有效和可持续整合的主要挑战和建议。这些闲置时期,加上电池存储容量,可能使电动汽车成为电源系统的吸引力灵活性解决方案。它们可以充当灵活的负载和分散的存储资源,能够提供额外的灵活性来支持电源系统操作。电动汽车充电基础架构及其集成的持续开发将取决于政策和监管框架,这也必须考虑网络中增加的EV负载的影响,例如分布网格中的高峰需求和拥堵等。网络拥塞,电压和电压下的电压问题,反应性电源补偿的要求,峰值负载增加,相位不平衡问题只是较高EV负载的分销公用事业可能见证的许多不同挑战中的少数。此外,安装高功率充电器可能需要升级分销基础架构。在这方面,实施智能充电是确保不受网络限制的电动汽车吸收的关键推动器。此外,通过智能充电,电动汽车可以使其充电模式适应峰值需求,填充负载谷,并通过调整充电水平来支持网格的实时平衡。智能充电将使分配实用程序能够控制电动汽车负载,从而帮助他们将充电负载转移到非高峰期,这可以帮助推迟电网升级要求。随着负载的升级,智能充电将有助于增加对电动汽车充电的可再生能源的利用。