具有有利的电化学特征的2D/2D异质结构(HTS)的生产具有挑战性,特别是对于半导体过渡金属二甲硅烷基(TMDS)而言。在这项工作中,我们引入了一项基于CO 2激光绘图仪的技术,用于实现包括氧化石墨烯(RGO)和2D-TMDS(MOS 2,WS 2,MOSE 2,MOSE 2和WSE 2)的HT膜。该策略依赖于激光诱导的异质结构(LIHTS)的产生,在辐照后,纳米材料在形态和化学结构中显示出变化,成为导电易于转移的纳米结构膜。LIHT在SEM,XPS,Raman和电化学上详细介绍了LIHT。激光处理诱导GOS转化为导电性高度去角质的RGO,并用均质分布的小型TMD/TM-氧化物纳米片装饰。所获得的独立式LIHT膜被用来在硝酸纤维素上构建独立的传感器,其中HT既可以用作传感器和传感表面。所提出的硝酸纤维素传感器制造过程是半自动化和可重现的,可以在相同的激光处理中生产多个HT膜,并且模具印刷可以定制设计。证明了不同分子(例如多巴胺(神经递质),儿茶素(黄酮醇)和过氧化氢)在电分析检测中的卓越性能,从而获得了生物学和农业样本中的纳米摩尔限制,并获得了高纤维抗性的纳摩尔限制。考虑到强大而快速的激光诱导的HT产生以及涂鸦所需模式的多功能性,提出的方法是通过可持续和可访问的策略开发电化学设备的破坏性技术。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 1 日发布。;https://doi.org/10.1101/2024.12.31.630865 doi:bioRxiv 预印本
2019年3月8日,刊登了计算机科学和数学博士学位(课程数学),并带有Europaeus博士。博士学位(MAT/08 NOW NOW MATH-05/A)用于研究低秩分解模型,优化算法及其应用。主管:Nicoletta del Buono教授。论文标题:从生物医学和其他现实世界数据中提取知识的非负矩阵因素化。2015年7月16日,具有完整分数和荣誉的数学硕士学位。来自意大利巴里·阿尔多·莫罗大学的学位。 数值分析中的论文标题为“ Analisi di微阵列Tramite la fattorizzazione non Negativa”。 2012年12月14日数学学士学位。 来自意大利巴里·阿尔多·莫罗大学(Bari Aldo Moro)的学位。 在数值分析中的论文标题为:“ di equazioni lineari a tratti per le reti di geni”。来自意大利巴里·阿尔多·莫罗大学的学位。数值分析中的论文标题为“ Analisi di微阵列Tramite la fattorizzazione non Negativa”。2012年12月14日数学学士学位。来自意大利巴里·阿尔多·莫罗大学(Bari Aldo Moro)的学位。在数值分析中的论文标题为:“ di equazioni lineari a tratti per le reti di geni”。
2024 年 6 月 21 日 — 由于有空位,即使通过了分班考试,也不能保证入学。... 农业技术和机械化 N4。植物和...
识别和工程黄素依赖性卤化酶用于选择性生物催化分析Jared C. Lewis*印第安纳大学化学系,印第安纳州布卢明顿,印第安纳州布卢明顿47405,美国焦点有机组织化合物被广泛用作基本块,中间体,药品,药物和农业属性的构成区块,以及其独特的化学性质。但是,安装卤素取代基经常需要功能化的起始材料和多步函数组互换。几类在自然界中进化的卤代酶可以实现不同类别的底物的卤素化;例如,富含电子芳香族化合物的位点选择性卤化是通过黄素依赖性卤代酶(FDHS)催化的。的机理研究表明,这些酶使用黄素还原酶(FRED)提供的FADH 2将O 2降低至与X-偶有氧化为HOX的水(X = Cl,BR,I)。该物种穿过酶内的隧道,进入FDH活性位点。在这里,据信它可以与活跃的位点赖氨酸近端与结合的底物结合,从而实现了通过分子识别赋予的选择性的亲电卤代化,而不是指导基团或强电子激活。FDH的独特选择性导致了几项早期的生物催化努力,制备卤素化很少见,而Hallmark催化剂控制的FDHS的选择性并未转化为非本地底物。FDH工程仅限于站点定向的诱变,从而导致位点选择性或底物偏好的适度变化。这些结果突出了FDH活动位点耐受不同底物拓扑的能力。为了解决这些局限性,我们优化了FDH REBH及其同源Fred Rebf的表达条件。然后,我们表明REBH可用于具有催化剂控制的选择性的非本地底物的卤化。我们报道了第一个示例,其中通过有向进化提高了FDH的稳定性,底物范围和位点选择性为合成有用的水平。X射线晶体结构的进化FDH和归还突变表明,整个REBH结构中的随机突变对于在不同的芳族底物上实现高水平的活性和选择性至关重要,并且这些数据与分子动力学模拟结合使用,以开发FDH选择性的预测模型。最后,我们使用全家基因组挖掘来鉴定一组具有新颖的底物范围和互补区域选择性的FDH集,对大型三维复杂化合物。我们进化和开采的FDH的多样性使我们能够在简单的芳族卤化之外追求合成应用。例如,我们确定FDHS催化涉及脱离对称性,肿瘤性卤素化和卤代基合理的对映选择性反应。我们最近对单个组件FDH/FRED AETF的研究进一步扩展了该实用程序。最初被AETF吸引到AETF时,因为它不需要单独的FRED,我们发现它会卤代卤代,这些基质不会有效地或其他FDHS有效地或根本没有卤化,并且为仅在繁殖后使用REBH变体而实现的反应提供了高的对映选择性。也许最值得注意的是,AETF催化位点选择性芳香族碘化和对映选择性碘醚化。一起,这些研究强调了FDH的起源
载体传播的黄病毒和人畜共患病的冠状病毒是重要的人类病原体,对全球公共卫生构成了严重威胁。黄病毒,在那里它们被节肢动物载体传播,每年引起数百万个感染。虽然大多数感染是轻度或无症状的,但登革热和黄热病病毒(如黄热病病毒)可能会引起潜在的致命性出血热和休克综合征。神经性黄病毒,例如西尼罗河,日本脑炎和tick虫脑炎(TBEV)会导致具有长期症状的脑膜脑炎。冠状病毒,尤其是SARS(2003)和MERS(2012)(2012年)(2012年)的人畜共患病毒,如2000年代初期一直在定期出现。最新的例子是SARS-COV-2,它在中国城市武汉引起了一系列感染后,遍布全世界,目前造成超过690万人死亡。尽管在SARS-COV-2的情况下,疫苗对于预防感染或严重疾病和住院是至关重要的,但抗病毒药是一种非常有价值的工具,可用于治疗和预防当前和未来的黄病毒和冠状病毒感染。在本文中提出的工作中,我们使用了硅和体外技术的组合来识别和测试病毒蛋白酶潜在抑制剂的活性。在我们的第一项研究(论文1)中,我们意外地鉴定出具有对ZIKV NS2B-NS3蛋白酶的体外活性的HIV蛋白酶抑制剂。Covid-19爆发后,我们将注意力转移到SARS-COV-2上。通过虚拟筛选已知蛋白酶抑制剂的库来鉴定抑制剂,该抑制剂通过分子动力学模拟评估,并最终使用基于FRET的酶促测定法对重组ZIKV蛋白酶进行了测试。还使用了分子对接和分子动力学模拟的相同组合来正确预测已知的泛氟韦蛋白酶抑制剂对TBEV蛋白酶的活性(论文2)。结果,我们是第一个报告基于肽的化合物,具有对TBEV的体外活性。我们首先测试了广谱抗病毒一氧化氮(NO)的抑制作用,并发现无释放的化合物快照对基于细胞的测定中的SARS-COV-2复制具有剂量依赖性抑制作用(论文3)。我们推测SNAP可以通过对SARS-COV-2主要蛋白酶的催化Cys145的反硝化来抑制SARS-COV-2蛋白酶,并发现SNAP对体外酶试验中的重组SARS-COV-2 MPRO蛋白酶具有剂量依赖性抑制作用。在我们的最后一项研究(论文4)中,我们通过对含有42亿种化合物的DNA编码的化学文库的亲和力筛选来确定一类新的有效SARS-COV-2蛋白酶抑制剂。所鉴定的化合物抑制了IC50低至25 nm的重组SARS-COV-2蛋白酶,并且在感染的CALU-3和CACO-2细胞系中低微摩尔范围内的剂量依赖性抗病毒作用。
La Jolla免疫学研究所的研究人员正在探索针对四种登革热病毒(DENV)血清型和Zika病毒(ZIKV)生产泛氟病毒疫苗的方法,从而激发了稳健的抗体和T细胞反应。所提出的六价疫苗将由MRNA组成,该mRNA编码来自每种DENV血清型和ZIKV的两个结构蛋白的串联序列以及编码来自所有四个DENV血清型和ZIKV的保守的非结构性蛋白质区域的mRNA。DENV领域一直将疫苗开发工作集中在诱导体液免疫方面,因为DENV特定抗体(ABS)被认为是保护自然感染的关键机制。但是,ABS可以在保护和发病机理中起双重作用。相关小鼠模型的研究表明,通过介导AB依赖性增强(ADE)感染,ABS在DENV发病机理中的直接作用。此外,唯一有执照的DENV疫苗在Dengvaxia®上的流行病学研究和III期临床试验数据支持ADE在DENV发病机理中的作用。除了ABS外,LJI研究人员的小鼠模型研究表明,病毒特异性和反应性CD8 T细胞都可以预防DENV。基于初步研究,他们预测,除了强大的AB反应外,除了具有较高幅度,广度和多功能能力的抗原特异性CD8 T细胞反应介导了对黄病毒的有效免疫力。 因此,他们计划测试各种组合物和治疗策略,以开发针对DENV和ZIKV的疫苗,该疫苗既产生最佳的CD8 T细胞反应和AB反应。基于初步研究,他们预测,除了强大的AB反应外,除了具有较高幅度,广度和多功能能力的抗原特异性CD8 T细胞反应介导了对黄病毒的有效免疫力。因此,他们计划测试各种组合物和治疗策略,以开发针对DENV和ZIKV的疫苗,该疫苗既产生最佳的CD8 T细胞反应和AB反应。
• 企业特征(行业、年龄、规模、营业额、劳动生产率) • 技术使用(虚拟变量——例如,您的企业是否使用以下任何一种人工智能技术?) • 互补资产(数字基础设施、ICT 技能/培训、其他数字
摘要:Passiflora edulis f. flavicarpa(黄色西番莲)是一种高价值热带作物,既可作为水果,也可作为营养品销售。随着美国水果产量的上升,必须研究盐度在半干旱气候下对作物的影响。我们评估了灌溉水盐度、叶龄和干燥方法对叶片抗氧化能力 (LAC) 和植物遗传反应的影响。植物在室外蒸渗仪槽中生长三年,水的电导率分别为 3.0、6.0 和 12.0 dS m − 1。Na 和 Cl 均随着盐度的增加而显著增加;3.0 和 6.0 dS m − 1 下的叶片生物量相似,但在 12.0 dS m − 1 下显著降低。盐度对 LAC 没有影响,但新叶的 LAC 高于老叶。低温烘干 (LTO) 和冷冻干燥 (FD) 的叶子具有相同的 LAC。对十二种转运蛋白基因(其中六个参与 Na + 转运,六个参与 Cl − 转运)的分析表明,根部的表达量高于叶子中的表达量,这表明根部在离子转运和控制叶子盐浓度方面起着关键作用。百香果对盐度的中等耐受性和其高叶子抗氧化能力使其成为加利福尼亚州的潜在新水果作物,也是营养保健品市场的黄酮类化合物的丰富来源。低温烘干是冷冻干燥的潜在替代方案,可用于准备百香果叶子的氧自由基吸收能力 (ORAC) 分析。
摘要:电子分叉是一种巧妙的生物能量转换机制,可有效耦合三种不同的生理相关底物。因此,执行此功能的酶通常在调节细胞氧化还原代谢中起关键作用。一种这样的酶是 NADH 依赖性还原铁氧还蛋白:NADP + 氧化还原酶 (NfnSL),它将 NAD + 的热力学有利还原耦合以驱动铁氧还蛋白从 NADPH 的不利还原。NfnSL 与其底物的相互作用被限制在严格的化学计量条件下,这可确保非生产性分子内电子转移反应的能量损失最小。然而,决定这一情况的因素尚不清楚。NfnSL 的一个奇怪特征是,分叉电子的两个初始受体都是独特的铁硫 (FeS) 簇,每个簇包含一个非半胱氨酸配体。尽管位点分化的 FeS 配体在许多氧化还原活性酶中都存在,但它们的生化影响和机制作用仍是谜。在此,我们描述了野生型 NfnSL 和变体的生化研究,其中位点分化的配体之一已被半胱氨酸取代。基于染料的稳态动力学实验、底物结合测量、生化活性测定和酶中电子分布评估的结果表明,NfnSL 中的这种位点分化配体在维持两种电子转移途径执行的协调反应的保真度方面发挥作用。鉴于这些辅助因子的共性,我们的发现具有广泛的意义,超越了电子分叉和机械生物化学,并可能为调节细胞氧化还原平衡的方法提供信息,以实现有针对性的代谢工程方法。