摘要本文探讨了在空间,时间和监管方面之间的灵活性增强如何影响经济成本和CO 2整合了来自风和太阳能的大量可再生能源的大量份额。我们开发了一个数值模型,该模型在互连的批发电力市场,跨国贸易(SPATIAL灵活性),能源存储(暂时灵活性)和可交易的绿色配额(法规灵活性)中,在异质能源技术和自然资源之间进行小时调整和投资选择。将模型纳入欧洲相互联系的电力市场体系的数据,我们发现,适当的灵活性组合可以带来可观的经济效率,降低成本(高达13.8%)和降低CO 2 Emisions(最高可达51.2%)。监管灵活性对于实现大多数最大可能的收益是必要的。我们还发现,提高灵活性的收益分布不均匀,一些国家会造成福利损失。
Abstract ............................................................................................................................... vi
越来越多的拥堵管理导致可再生能源受到减少。在大多数欧盟成员国中,这通常意味着化石燃料的产生填补了空白。管理电网拥塞的一种更有效的方法是巧妙地管理能源资产。这需要智能使用可用的能源,能源存储和计划,以鼓励或奖励消费者将能源使用量与电网可用性相匹配。鉴于网格的广阔,以及最终将与之联系的电动汽车数量,灵活性可能成为解决局部拥塞,避免限制的最便宜,最有效的方法之一。
但是,格式形成逆变器的最新进展表明,这些稳定性问题中的许多都可以有效解决。研究表明,频率的性能实际上可以随着电网形成逆变器的整合而改善,因为它们会积极地有助于系统的惯性和电压支持。尽管在具有极高可变的可再生能源(VRE)和同步物质的全部阶段的电力系统的可行性方面仍然存在挑战,但潜在的解决方案(例如同步冷凝器和其他稳定技术)可以用作可靠的后排。虽然向高空场景的过渡呈现出技术复杂性,但电源电子和系统稳定策略的持续创新为确保安全且弹性的电力系统提供了可行的途径。
4请注意,相关欧盟法规的当前草案需要同时规则的两个例外:在5年的过渡期间允许每月平衡,当价格低于一定门槛时,允许购买网格。但是,本文从这些详细规则中摘要,并着重于“理想”同时标准的效果。5此转换效率以及对氢在本文档中的能量含量的所有参考是指氢的较低加热值(33.3 kWh H2 /kg H2)。
©2025 nvent。所有NVENT标记和徽标均由Nvent Services GmbH或其分支机构拥有或许可。所有其他商标都是其各自所有者的财产。
本文提出了一种方法,该方法将建筑物中可用的间接灵活性(电动汽车充电)考虑在内,用于确定固定电池存储系统(直接灵活性)的规模。对来自 Predis-MHI 平台(一个生活实验室)的数据应用了线性规划方法,从而优化了电动汽车的日常充电以及拟议电池的充电和放电计划,同时确定了电池容量。我们的结果表明,基于参考基准情况的自耗百分比增加,与不考虑间接灵活性的方法相比,可以将所需的电池容量减少高达 100%。虽然相关,但本文提出的定型方法假设了最佳的人类行为,这通常很难实现。我们提出的方法可以进行调整并用于确定住宅和商业/公共建筑的直接灵活性。
使用电力供暖有助于脱碳,并为整合可变可再生能源提供灵活性。我们使用开源电力行业模型分析了德国 2030 年情景中的电储热器的情况。我们发现,灵活的电加热器通常会增加低可变成本的发电技术的使用,而这些技术不一定是可再生能源。然而,使传统的夜间储热器在时间上更加灵活只能带来中等程度的好处,因为在供暖季节白天的可再生能源供应有限。因此,相应的投资成本必须非常低才能实现总系统成本效益。由于储热器仅具有短期储热功能,因此它们也无法协调冬季热量需求的季节性不匹配和夏季可再生能源供应量高的问题。未来的研究应评估长期储热的好处。