基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
二氧化碳羽状地热 (CPG) 发电厂可利用地质储存的二氧化碳发电。本研究介绍了一种灵活二氧化碳羽状地热 (CPG-F) 设施,该设施可利用地质储存的二氧化碳提供可调度电力、储能或同时提供可调度电力和储能——提供基载电力并使用可调度储能进行需求响应。研究发现,CPG-F 设施比 CPG 发电厂可提供更多的电力,但每日发电量较低。例如,CPG-F 设施在 8 小时内(8 小时-16 小时工作周期)产生 7.2 MW e,比 CPG 发电厂提供的电力高 190%,但每日发电量从 60 MW e-h 下降了 61% 至 23 MW e-h。 CPG-F 设施专为不同持续时间的储能而设计,其资本成本比 CPG 发电厂高 70%,但比大多数为特定持续时间设计的 CPG-F 设施高出 4% 至 27%,同时产生的电力比 CPG 发电厂多 90% 至 310%。CPG-F 设施旨在从提供 100% 可调度电力转换为 100% 储能,其成本仅比仅为储能而设计的 CPG-F 设施高出 3%。
摘要该研究的主要目的是设计和开发一种既可持续又适应性的教学模型,能够在混合学习(BL)的背景下响应综合教学的不断增长的需求。该模型旨在支持柔韧性和教学连贯性的有效而动态的教学和评估组成部分。研究考虑了教师和学生的不同需求,并分析了将教育技术和创新方法论方法整合到混合学习途径中的方法。这项研究是基于在大学一级进行的试点案例研究,采用混合的数据收集方法。通过对教师和学生进行的调查收集了定量和定性数据,并通过有目的样本进行的半结构化访谈进行了补充。这种方法可以深入探索与拟议模型相关的看法,挑战和收益。使用主题分析分析数据,以获取定性数据的定性响应和描述性统计数据,以进行三角测量发现。获得的结果强调了仔细计划的重要性,这些计划有效地平衡了理论内容与实用和互动活动。试点研究的证据表明,结构化的教学大纲促进了积极的参与和教学一致性,参与者报告说,任务设计的清晰度提高了,并在同步和异步活动中提高了协作。开发的模型采用结构化教学大纲的形式,其中包括专门针对同步和异步时刻组织的特定部分,为计划促进协作参与的活动提供了详细的指示。此外,该模型还提供了创新的形成性和总结性评估策略,允许对工作和非工作人员进行评估。这种灵活而模块化的结构不仅旨在使学习体验更加动态和易于访问,还旨在鼓励学生在学习中发挥积极和有意识的作用,使他们成为教育过程的主角。关键词:试点案例研究;自适应教学大纲;混合学习;形成性评估;教学设计。
保留技术更改,交付选项,错误和价格变化。所有产品和公司名称均为其各自所有者的商标™或注册商标。他们的使用并不意味着与这些公司的任何隶属关系或认可。数字服务和内容(例如应用程序)和服务器平台由第三方提供。可在App Store中下载。观察设备上第三方的使用条款。规定,可用性(包括在某些地区),设备上此数字内容和服务提供的更新和终止是由第三方自行决定的。购买该产品时可能无法提供某些服务。需要互联网访问。所需的单独(付费)订阅和/或会员资格。Ultra HD和HDR可用性符合订阅计划,Internet服务,设备功能和内容可用性。
4请注意,相关欧盟法规的当前草案需要同时规则的两个例外:在5年的过渡期间允许每月平衡,当价格低于一定门槛时,允许购买网格。但是,本文从这些详细规则中摘要,并着重于“理想”同时标准的效果。5此转换效率以及对氢在本文档中的能量含量的所有参考是指氢的较低加热值(33.3 kWh H2 /kg H2)。
使用电力供暖有助于脱碳,并为整合可变可再生能源提供灵活性。我们使用开源电力行业模型分析了德国 2030 年情景中的电储热器的情况。我们发现,灵活的电加热器通常会增加低可变成本的发电技术的使用,而这些技术不一定是可再生能源。然而,使传统的夜间储热器在时间上更加灵活只能带来中等程度的好处,因为在供暖季节白天的可再生能源供应有限。因此,相应的投资成本必须非常低才能实现总系统成本效益。由于储热器仅具有短期储热功能,因此它们也无法协调冬季热量需求的季节性不匹配和夏季可再生能源供应量高的问题。未来的研究应评估长期储热的好处。
摘要 为实现可持续能源系统,进一步增加可再生能源 (RES) 发电量势在必行。然而,RES 的开发和实施带来了各种挑战,例如,处理由于 RES 的间歇性而导致的电网稳定性问题。相应地,日益波动甚至为负的电价也对 RES 电厂的经济可行性提出了质疑。为了应对这些挑战,本文分析了 RES 电厂与计算密集型、耗能数据中心 (DC) 的集成如何促进对 RES 电厂的投资。开发了一个优化模型,用于计算由 RES 电厂和 DC 组成的综合能源系统 (IES) 的净现值 (NPV),其中 DC 可以直接消耗来自 RES 电厂的电力。为了获得适用的知识,本文通过以下方法评估了所开发的模型:
摘要 - 幽灵投机侧通道攻击构成了计算机系统安全的巨大威胁。研究表明,使用选择性载荷硬化(SLH)的选择性变体可以有效地保护密码恒定时间代码。slh还不够强大,无法保护非晶型代码,从而引入了Ultimate SLH,该代码为任意程序提供了保护,但对于一般使用的开销太大,因为它保守地假定所有数据都是秘密的。在本文中,我们引入了一个灵活的SLH概念,该概念通过正式概括选择性和最终的SLH来实现两全其美。我们为保护任意程序的此类转换提供了适当的安全定义:运行猜测的任何转换程序都不会泄漏源程序依次泄漏。我们正式证明使用ROCQ权METER证明两个灵活的SLH变体强制执行此相对安全保证。作为简单的推论,我们还获得了最终的SLH执行我们的相对安全性概念,还可以使Value SLH的选择性变体和地址SLH执行投机性恒定时间安全性。关键字 - 侧通道攻击,投机执行,规格,安全汇编,投机负载硬化,投机性恒定时间,相对安全性,正式验证,ROCQ,COQ
Sanlam集团是储蓄和投资协会的正式成员。冰川管理公司(RF)(PTY)LTD构成Sanlam集团的一部分。集体投资计划通常是中长期投资。请注意,过去的表演不一定是对未来表现的准确确定,并且投资 /单位 /单位信托的价值可能会下降和UP。经理,冰川管理公司(RF)PTY Ltd(RF)PTY LTD的费用和最高佣金,是证券集体投资计划的注册和批准经理。可以从经理免费获得拟议投资的其他信息,包括小册子,申请表和年度或季度报告。
柔性设备的研发仍任重道远,并且充满了障碍,严重阻碍了此类系统的发展。[3] 在主要的限制因素中,我们可以观察到,迫切需要有效的策略来在柔性基板上获得导电路径。[4] 此外,即使柔性是强制性的,可拉伸基板也更受欢迎,因为便携式设备领域正在朝着可穿戴配置的方向发展。这意味着不可能将柔性和拉伸性分开。在这种背景下,在石墨烯基材料大家族中,激光诱导石墨烯应运而生[5],成为制造柔性电子设备最有前途的材料之一。[6] 然而,尽管在新基板上开发 LIG 付出了无数努力,但仍然缺乏适用于激光石墨化的可拉伸聚合物。[7] 事实上,到目前为止,还没有观察到弹性基板石墨化的证据。就弹性体聚合物家族而言,聚二甲基硅氧烷 (PDMS) 是微系统技术中最受欢迎的弹性体材料,因为它具有诱人的物理和化学特性,例如弹性、低至 220 nm 的光学透明度、可调的表面化学性质、低水渗透性但高气体渗透性和高介电性能。此外,它是一种经济高效的材料,可用于开发可靠的大规模复制技术。[8]