1. BM Kelley、P. Top、SG Smith、CS Woodward 和 L. Min,“用于电力电网和通信网络联合仿真的联合仿真工具包”,2015 年网络物理能源系统建模与仿真研讨会 (MSCPES),2015 年,第 1-6 页。2. DP Chassin、JC Fuller 和 N. Djilali,“Gridlab-d:基于代理的智能电网仿真框架”,2014 年。智能电网通信、控制和计算技术 (SmartGridComm),2020 年,第 1-5 页。 3. B. Palmintier、D. Krishnamurthy、P. Top、S. Smith、J. Daily 和 J. Fuller,“螺旋式高性能输电-配电-通信-市场协同仿真框架的设计”,2017 年网络物理能源系统建模与仿真研讨会 (MSCPES),2017 年,第 1-6 页。4. San Roman、F. de Cuadra、N. Gensollen、T. Elgindy 和 P. Duenas,“SMART-DS 合成电网数据开放模型,适用于 sfo、gso 和 aus”,2020 年 12 月。[在线]。可访问:https://data.openei.org/submissions/2981
2.1 软质聚氨酯泡沫的基本化学性质…………………………………………... 5 2.1.1 发泡反应………………………………………………………………………………………….. 5 2.1.2 凝胶化反应……………………………………………………………………………………… 6 2.1.3 异氰酸酯基团化学性质…………………………………………………………………………... 7 2.1.4 泡沫配方的组分………………………………………………………………………….8 2.1.4.1 异氰酸酯 ………………………………………………………………………………… 10 2.1.4.2 多元醇 ………………………………………………………………………………... 12 2.1.4.3 水 ……………………………………………………………………………………… 17 2.1.4.4 催化剂 …………………………………………………………………………………… 17 2.1.4.5 表面活性剂 ………………………………………………………………………………… 19 2.1.4.6 交联剂 …………………………………………………………………………….20 2.1.4.7 辅助发泡剂 ………………………………………………………………… 21 2.1.4.8 添加剂 ………………………………………………………………………………….. 21
................... 2.3 三相晶闸管控制补偿器 2.4 先进系列补偿器的数字保护方案 .......................................................................................... 2.5 建议 ..电力系统的模糊逻辑控制 ................................................................................................
Zoppas Industries Heating Elements Technologies 是一家全球供应商,为太空卫星、航天器、加压模块和地面天线提供加热器和系统,自 1992 年起获得 ESA/ESCC 认证。柔性加热元件由层压在两个绝缘层之间的蚀刻箔电阻元件组成。Zoppas Industries Heating Elements Technologies 生产的柔性加热箔的最小厚度仅为 0.15 毫米,可产生 200°C 的热量,从而通过加热器的薄型设计和直接粘合到应用上实现出色的传热效果。这些加热器采用薄型设计和结构,由柔性材料制成,可定制成适合几乎任何类型的设备的形状。加热器可应用于最复杂的形状、几何形状、曲线和管道,而不会牺牲效率或可靠性。柔性加热器提供快速的加热和冷却速度,确保在不同功率密度下均匀分布热量。
John Avery,项目管理总监,Geysers Power Company, LLC Brad Backlin,机械工程经理,Geysers Power Company, LLC Brian Benn,工程项目经理,Geysers Power Company, LLC Tim Conant,地热工程总监,Geysers Power Company, LLC Dean Cooley,资产管理总监,Geysers Power Company, LLC John Farison,工艺工程总监,Geysers Power Company, LLC Julio Garcia,地热生产分析经理,Geysers Power Company, LLC James Kluesener,区域运营副总裁,Geysers Power Company, LLC Samuel Mason,项目经理,Geysers Power Company, LLC Leslie Morrison,化学工程师,Geysers Power Company, LLC Kevin Petersen,工厂经理,中央运营,Geysers Power Company, LLC Sarah Pistone,油藏工程师,Geysers Power Company, LLC Jericho Reyes,生产工程师,Geysers Power Company, LLC Guy Tipton,资产管理总监,Geysers Power Company, LLC Karl Urbank,Geysers Power Company, LLC 总厂经理 Mark Walters,Geysers Power Company, LLC 高级地质学家 Melinda Wright,Geysers Power Company, LLC 高级地质学家/地球化学家 Alan Balzer,Geysers Power Company, LLC 项目经理 Scott Cameron,Geysers Power Company, LLC 隔离与电气技术员 Brian Bastoni,Geysers Power Company, LLC 隔离与电气技术员 Tony Derenia,Geysers Power Company, LLC 隔离与电气技术员 William Tallman,Geysers Power Company, LLC 隔离与电气技术员
1 菲律宾达沃雅典耀大学工程与建筑学院电子工程系,达沃市,8016 2 弗吉尼亚理工学院暨州立大学工程学院工程教育系,弗吉尼亚州布莱克斯堡,24061 3 巴丹半岛州立大学增材制造、先进材料和先进制造 (DR3AM) 中心/工业工程系设计、研究和推广,巴丹半岛州立大学,巴丹巴兰加市,2100 菲律宾 4 亚当森大学工程学院机械工程系,马尼拉 1000 菲律宾 5 凯斯西储大学工程学院大分子科学与工程系,俄亥俄州克利夫兰,44106 美美国田纳西州里奇 37830
摘要:清洁能源来自不排放任何污染物(尤其是二氧化碳等温室气体,而二氧化碳会导致气候变化)的发电系统。因此,清洁能源的日益普及促进了旨在保护环境和减少天然气和石油等不可再生燃料所造成的问题的创新。然而,能源资源的过度消耗和浪费造成了严重的问题。为了解决这个问题,人们提出并实施了各种策略。例如,研究人员利用可再生能源引入了新的、更高效、更环保的能源消耗方式。本研究调查了柔性混合动能太阳能收集系统的多配置集成性能分析。随着对可持续能源解决方案的需求不断增加,动能和太阳能收集技术的集成为提高效率和灵活性提供了有希望的机会。电力是通过安装在人行道上的光伏 (PV) 板和多个串联-并联配置的压电设备的组合产生的。产生的电力为可充电电池充电,可在紧急情况下为低压应用供电。此外,还开展了研究,以提高太阳能电池板的输入电压和板中压电蜂鸣器的效率配置,以测量这两个来源的充电系统效率。该研究探讨了动能和太阳能收集组件之间的协同作用,考虑了能量输出、系统适应性和成本效益等因素。此外,还检查了各种物体在压电蜂鸣器上移动时产生的电荷。每个太阳能电池板和踏板都将包括一个 16 x 2 LCD 显示屏,该显示屏将显示太阳能电池板的输出性能和施加压力时的压电蜂鸣器。使用 Multisim 和 Proteus 软件模拟电力混合收集,它们监视输入和输出参数。Multisim 软件用于为太阳能和压电系统创建 AC-DC 电路,Proteus 模拟由 Arduino Uno R3 控制的混合电力收集和储能电路。总之,该产品可以提供高达 5 V 的大量输出,并通过 Blynk 应用程序发送通知。这项研究为灵活混合能量收集系统的设计和优化提供了宝贵的见解,推动了各种应用的可持续能源解决方案的开发。
2。特殊的培训机会,其中可能包括(但不完全覆盖): - 海外实地考察 - 实习/实习/安置 - 实验室访问/培训 - 新的高级研究技能的培训 - 新高级研究技能 - 工业合作 - 工业合作3。有机会与行业或在跨学科界面合作提供合作培训,包括跨学科的培训,但不包括在内的培训 - 但可以进行培训 - 但在实习方面进行了培训,这是 - - 但可以进行培训 - - 但可以进行实习的培训 - - 但可以进行实习。领域 - 将另一学科吸引个人到MRC学生身份4。从博士学位的过渡中,出色的候选人过渡以提高论文提交后的学术界和超越学术界的竞争力,其中可能包括(但不完全涵盖): - 前往潜在的实验室参观 - 实习机会/实习>
我们提出了一种规范的计算理论,说明神经回路如何在动态环境中支持视觉引导的目标导向动作。该模型建立在主动推理的基础上,通过动态最小化广义预测误差来推断感知和运动控制信号。后顶叶皮层 (PPC) 被认为可以保持对环境状态的不断更新的期望或信念,并通过灵活的意图操纵它们,参与动态生成目标导向动作。反过来,背侧视觉流 (DVS) 和本体感受通路实现了生成模型,将高级信念转化为感官级预测,以推断目标、姿势和运动命令。在目标到达任务中测试了一个包含视觉和本体感受传感器以及驱动上肢的概念验证代理。代理在各种条件下都表现正确,包括静态和动态目标、不同的感官反馈、感官精度、意图增益和运动策略;极限条件也是个性化的。因此,由动态和灵活意图驱动的主动推理可以支持不断变化的环境中的目标导向行为,而 PPC 则被认为是其核心意图机制的载体。更广泛地说,这项研究为端到端环境中的目标导向行为研究提供了规范基础,并进一步推进了主动生物系统的机制理论。
患有严重运动障碍(如脑瘫或闭锁综合征)的人通常通过具有单个开关输入的增强和替代通信 (AAC) 设备进行交流 [13、30、42]。用户可以通过按下按钮、释放一股空气或眨眼等方式控制开关的激活时间 [3、14、15]。最常见的是,这些开关激活(以下称为“点击”)用作扫描界面的输入 [52、54]。图形用户界面依次突出显示不同的选项;当开关被激活时,界面会选择突出显示的选项。但即使对于中等数量的选项,按顺序突出显示每个选项也可能是低效的。虽然一种称为行列扫描的流行变体效率更高,但它要求选项以网格排列。计算机用户经常需要在未排列在网格中的选项中进行选择;例如在绘图、游戏和网页浏览中。1