想象一下在国际空间站、前往月球的 Gateway 或前往火星的宇宙飞船中度过一整天的微重力生活。从早上起床到晚上睡觉,你会做什么?这些事情有什么不同?宇航员在微重力环境下吃饭、每天至少锻炼 2 小时、刷牙,但这并不完全一样,因为所有东西都漂浮着!他们也努力工作,尽情玩乐——从进行重要的科学研究到在太空中编织或弹吉他。你可以进行哪些微重力实验来了解微重力生活的不同之处?你可以创新(和测试!)哪些发明或技术来帮助宇航员在微重力环境下生活?
下载完成后,安装将自动开始,按“下一步”继续完成安装屏幕,以完成 PC Trainer 的安装。PC Trainer 安装完成后,将下载实际的 GTNXi PC Trainer。下载完成后,将开始安装此组件,按“下一步”继续。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
本文探讨了阻碍高超音速技术发展的主要挑战,重点是热管理,推进系统和可操作性。超音速技术(定义为超过5马赫的飞行)为军事和商业航空的进步提供了重要的机会。尽管五十多年的发展和不断增长的投资,尤其是五角大楼的2025年预算要求(69亿美元)强调了高超音速技术的广泛采用仍然不完整。在超声速度下产生的极端热量需要先进的材料和冷却系统,以维持结构完整性并保护关键组件。此外,开发合适的推进系统,例如Ramjets和Scramjets,对于实现和维持高超音速速度至关重要,但是这些系统目前在效率和应用方面面临限制。最后,本文讨论了与超声飞行相关的可操作性约束和雷达检测问题,这构成了重大的操作挑战。正在进行的国际竞争,特别是与俄罗斯和中国的竞争,强调了克服这些挑战以推进高超音速技术的战略重要性。调查结果表明,尽管已经取得了重大进展,但进一步的研发对于在军事和商业环境中都充分发挥了高超音速技术的潜力至关重要。
十多年前,Flight Works 为立方体卫星和微型卫星引入了泵供推进系统的概念,如今,该公司的泵技术在 CAPSTONE 航天器执行任务的过程中发挥了关键作用,对此,该公司深感自豪。小型电动泵由加利福尼亚州圣路易斯奥比斯波的 Stellar Exploration 公司提供,该公司开发了推进系统,它将储存在储罐中的低压肼以高压方式输送到小型推进器。这种方法简化了推进系统,并允许使用保形、轻质储罐。为了满足可靠性和射程安全要求,泵头采用密封设计,并通过磁耦合由电动机驱动。“我们选择 Flight Works 泵作为市场上唯一可行的解决方案,可用于此应用。这款推进剂泵满足我们所有的要求
技术出版物。已完成研究或重要研究阶段的报告,介绍 NASA 项目的结果,并包含大量数据或理论分析。包括被认为具有持续参考价值的重要科学和技术数据和信息的汇编。NASA 的同行评审正式专业论文的对应文件,但对手稿长度和图形演示范围的限制不那么严格。
航空旅行已成为人们生活中必不可少的一部分。不仅是为了方便起见,而且是因为它是前往遥远国家的最快方式,有时涵盖了其他运输方式可能需要几天甚至几个月的距离。因此,航空业的竞争加剧和降低的飞行成本使航空旅行更加负担得起,从而使其能够吸引更多的受众。到2023年,全球航空业为大约45亿乘客提供了服务。根据2021年的数据,任何给定时间的空气中估计的平面数为15,500至17,500。随着航空业的发展,全球飞行数量增加了,因此进行更好的飞机跟踪和安全性的必要性变得更加至关重要。确保乘客安全的需求推动了新技术进步的发展。这是ADS-B(自动依赖性监视广播)技术发挥作用的地方,可以增强飞机跟踪并提高空中交通管理的效率。ADS-B技术通过在飞机的速度,高度和位置提供实时数据来提供帮助,从而可以更准确,更安全地跟踪飞机。尽管有好处,但实现全球ADS-B覆盖范围仍然是一个重大挑战。传统的部署方法通常受到高成本和后勤障碍的阻碍,尤其是在稀缺地面站的农村和服务不足的地区。然而,巨大的尚未开发的潜力在于将这一基础设施分散,并激励个人有助于扩大ADS-B覆盖范围。目前,营利性公司主导了ADS-B地面站基础设施,导致可扩展性缓慢和诸如土地租金和维护之类的高昂经常性成本。此覆盖范围不仅会影响航空安全性,而且还限制了利用ADS-B数据来用于更广泛用例(包括物流,研究和情报收集)的能力。derad网络在这一点上步骤,并授权个人使用便宜且易于安装的设备建立和操作ADS-B地面站。参与者被DRD令牌激励,创建了一个互惠互利的系统,其中贡献者在增强全球航空安全的同时获得奖励。通过分散ADS-B基础架构,DERAD网络克服了传统系统效率低下,实现了更快的可扩展性和较低的成本。该模型提高了航空安全性,并为ADS-B数据的创新应用创造了机会。例如,研究人员,记者和物流公司可以访问分散的市场以获取实时飞行数据,从而在跟踪和分析中解锁了新的可能性。derad网络将复杂的集中系统转换为可访问,可扩展的解决方案,为全球空中交通管理设置新标准
摘要:到第二次世界大战中期,皇家空军采用了一种极其复杂的训练流程,在许多方面,它为当今现代空军训练机组人员提供了全球模式。这一流程并非一夜之间发展起来的,而是源于第一次世界大战期间开发的训练方法。尽管许多作者谴责了这些早期的训练方法,但必须记住,训练是与战术的演变、飞机性能的快速提高以及对航空学和空中力量应用的普遍理解同步发展的。与航空业本身一样,第一次世界大战期间的训练发展迅速,并出现了新的创新发展,例如建立正规的训练结构、专门设计的训练飞机以及使用海外训练地点来应对恶劣天气和国内机场不足的问题。也许更重要的是,第一次世界大战的经验表明,培养满足工业化战争要求的机组人员需要大量资源和专注。很明显,“训练管道”是一个动态概念,需要大量资源才能确保其成功运作。
飞行测试仍然是飞机开发或改装过程中必不可少的一步。现代固定翼飞机是高度复杂的系统,推动着空气动力学、推进和控制系统技术的发展。其中许多技术相互集成且相互依赖。当然,从 F-22 到 EF2000 的现代军用飞机推动着飞机可内置功能的极限。空中客车的 A3 10 和波音的 777 等商用运输机采用了许多最初用于军用飞机的飞机先进技术。飞机的复杂性不断增加,给参与这些飞行器飞行测试的人员带来了新的挑战。40 多年来,模拟在飞行测试中发挥了关键作用。随着飞机的复杂性不断提高,模拟的作用也不断增强。每个主要的飞机开发商,无论是商用还是军用,都在一定程度上依赖于模拟的使用。将这些模拟应用于飞行测试是飞机开发的一个重要方面。每年,世界各地都会举办数十场研讨会和会议,讨论模拟及其用途。随着计算机技术继续以加速的速度发展,模拟领域也随之不断扩大。不幸的是,很少有文字记录如何有效地使用模拟来支持飞行测试。
飞行软件是任何航天器成功执行任务的基础。飞行软件的可靠性并不是一个新话题,过去几十年来,人们通过质量保证、容错和故障安全操作对飞行软件进行了广泛的研究,特别关注了具有冗余层的飞行软件。尽管人们关注故障管理原则和实践,但对飞行软件的网络安全关注有限。飞行软件的容错与飞行软件的安全挑战之间的主要区别在于,容错假设故障本质上是概率性的,并且故障将按照可预测的顺序从可预测的环境影响中发生。飞行软件的网络安全威胁是由一个聪明的对手传播的,尽管有故障安全机制或可用的防御措施,他们可能会积极地与飞行软件互动,故意以一种意想不到的方式强调其流程。攻击者的追击或下一步行动并不像环境传播的故障那样可预测。虽然飞行软件社区历来以隐蔽安全为幌子运作,但飞行模块的开源和商用现货 (COTS) 日益普及,抹去了任何可察觉的安全优势。美国宇航局的核心飞行系统 (cFS) 和美国宇航局喷气推进实验室的 F' 飞行软件可供对手和安全研究人员随时探索,这迫使公众讨论太空飞行软件安全实践和“新”太空时代的要求。本文提出了飞行软件安全的研究议程,讨论了迄今为止在相关领域开展的强有力的相关研究,