随着当前技术的状态继续改善,越来越多的应用程序开始利用辐射来扩展和简化行业的功能。辐射对于医疗区域的X射线成像和癌症治疗是必需的。辐射也用于农业等其他行业,以提高粮食生产质量。辐射的有用性只会引起折磨,因为发现越来越多的用途。另一方面,为了获得这些优势,必须在使用辐射时非常谨慎[1 E 3]。电离辐射具有足够的能量来长期对生物组织的长期损害,这是辐射的一个例子,即使处理不当,可能会极大地破坏。 在辐射源和人体之间放置物质是保护人类免受辐射的有害影响的最流行和有效方法之一。 辐射盾牌是这些类型的材料的名称,在过去的几十年中,已经进行了大量的研究,以使辐射屏蔽层尽可能有效,以实现其设计[4 E 12]。 取决于必须屏蔽的辐射,辐射的能级,需要保护的物体以及需要考虑的任何其他外部考虑因素,Raiviation Shields可能会采取多种形式和大小的尺寸[13,14]。 有几种玻璃品种,每种玻璃根据玻璃的形成特征而截然不同。电离辐射具有足够的能量来长期对生物组织的长期损害,这是辐射的一个例子,即使处理不当,可能会极大地破坏。在辐射源和人体之间放置物质是保护人类免受辐射的有害影响的最流行和有效方法之一。辐射盾牌是这些类型的材料的名称,在过去的几十年中,已经进行了大量的研究,以使辐射屏蔽层尽可能有效,以实现其设计[4 E 12]。取决于必须屏蔽的辐射,辐射的能级,需要保护的物体以及需要考虑的任何其他外部考虑因素,Raiviation Shields可能会采取多种形式和大小的尺寸[13,14]。有几种玻璃品种,每种玻璃根据玻璃的形成特征而截然不同。b 2 O 3是使用最广泛的玻璃板之一,因为硼酸盐玻璃杯具有多种用途,包括辐射屏蔽和光玻璃。b 2 O 3是使用最广泛的玻璃板之一[15,16]。b 2 O 3玻璃杯受到了高度追捧,因为它们具有低熔点,透明度高,廉价成本,高度的热稳定性,易于生产过程和高溶解度。此外,将各种玻璃修改器和中间体不合转,导致硼的配位数从三个增加到四个。这导致玻璃系统的连接性和刚度增加,从而产生结构更健壮的玻璃。随着各种氧化物被掺入玻璃中,不仅玻璃本身的成分可能会改变,而且其他一些品质也会改变。为了成功地和有效地使用利益的应用,绝大多数辐射技术都呼吁多种物质质量。历史悠久的二氧化硅玻璃被认为是可行的选择,由于其可用性,易于制造,耐腐蚀性,热和机械稳定性以及光学清晰度[17]。作为辐射屏蔽的技术,可以推进材料的新方面,包括
摘要简介:最近,许多领先的全球社会努力促进质子治疗技术,以使其普遍使用。目标是为所有受益于此的癌症患者提供质子疗法,从而提高其整体生活质量。这个共同的目标是全球范围内的辐射肿瘤学家,医学物理学家,放射治疗师和医院主管。引入质子治疗系统,再加上对动量分析系统的调整,具有潜在的临床益处。材料和方法:动量分析系统通常会修改临床质子束的能量,从而影响Bragg峰的形状和位置。Fluka是一种基于蒙特卡洛的软件,用于通过将质子束引导到水幻影中来模拟各种光束设置。分析了所得的bragg峰,并将其与不同设置模拟的峰进行了比较。结果:研究结果表明,在所有潜在的肿瘤深度中,Bragg峰在带有和没有调节剂的质子治疗系统中发生变化。结果表明,对于深肿瘤(例如前列腺(例如前列腺)到Z = 2.6 cm的Z = 31.4 cm的位置,对于脊柱轴肿瘤的位置,仅通过调节调节剂= 5至∆Z调节仪的调节剂深度= 30 cm的能量水平,而无需更改Proton的能量水平。结论:对这些结果的研究可能是潜在的剂量结果,特别是对于有兴趣获得这种质子治疗系统以治疗和管理肿瘤在不同深度的诊所。
对于一个各向同性光子源,通过fluka计算的能量为10 meV的能量5。另外,图。5显示了Fluka计算的10 MEV的能量为10 MEV的平面单向源的混凝土暴露因子。更重要的是,这些结果还与其他研究的结果进行了比较[1],[11]。com parison的出色协议约为5%。同样,图。6。另外,图。6显示了Fluka计算出的10 MEV的能量为10 MEV的平面单向源的混凝土暴露因子。此外,这些结果也将与其他研究的结果进行比较[2],[3],[11]。比较显示了大约5%的Excel大约一致性。这些结果表示计算的可靠性
F. Ballarini等人,“ Fluka:地位和观点”,“第15届有关屏蔽加速器,目标和辐射设施的屏蔽方面的讲习班”(Satif-15),美国密歇根州东兰辛,美国密歇根州,美国密歇根州,9月2022日,2022年,2022年,2022年,
Options: -1 Load the first flair file in the folder --compile Compile executable -d/-D Activate/Deactivate the beta-development features --data # Process/Merge the data files of all or specific runs (no default).接受模式或逗号分开的名称,例如*或foo*或foo,bar* -exe文件fluka可执行文件。(默认值:{flukadir}/bin/fluka)-h | - ?| - help打印此帮助页-i/ - ini文件替代配置文件(默认:$ home/.flair/.flair/.flair/flair.ini)-l | - 列表列表最近的项目-p/-p启用/禁用分析-M#在模式下打开一个新项目-plots -plots可做所有图,并保存文件-r | - 重载最新项目-R#加载最近的项目(数字1..10或FILENAME)-s skip oil dialog -t dialog -t#| -Type#强制导入文件类型加载,如果与.flair不同。接受的类型:Flair Fluka GDML MCNP Moira Penelope Pickle -U | - 更新重新计算并保存输入文件变量-v/-v | - verbose增加/降低详细的水平 - noansi dusts上的ANSI颜色
在肝素化的10毫升试管中抽取了来自受试者的静脉血液样本(Vacutainer,Becton Dickinson,Meylan,France,France)。未指定受试者是在美联储中还是禁食状态。通过以3000 rpm离心15分钟将血浆从血细胞中分离出来(Omnifuge 2.0 Rs,Heraeus GmbH,Hanau,Hanau,Switzerland),并在–25°C的塑料小瓶中储存,直到分析。对血浆中Mg的定量分析。等离子体样品稀释200倍,以使最终稀释溶液的Mg浓度约为0.1 µg/ml。商业MG标准(Certipur,Merck,Darmstadt,德国)通过标准范围进行内部校准,以最大程度地减少矩阵效果。ninrate(Fluka Chemie GmbH,Buchs,瑞士)作为基质修饰符(最终溶液中的5 mg la/ml)和0.1%Triton X-100溶液(Fluka Chemie GMBH)添加为re-
产品名称制造商#022基于溶剂的地毯接缝密封剂Capitol USA,LLC#1通用消毒剂清洁剂Sherwin-Williams清洁产品清洁产品#2柴油燃料BP Oil Company#2 Eco Glass Oil Cance Chemical Company (-)-EPINEPHRINE Sigma Chemical Company (+-)-Alpha-Pinene, 98% Sigma Chemical Company (+)-CAMPHOR, NATURAL Fluka Chemical Company (+)-Carvone Sigma-Aldrich Corporation (+)-Usnic acid ALDRICH CHEMICAL COMPANY (+/-)-(Alpha)-Lipoic acid Sigma Chemical Company (+/-)-ABSCISIC ACID, 99% (HPLC)Sigma化学公司(+/-) - A-Topherol乙酸SIGMA化学公司抗菌幻想fantastik All All Adl Admus重型清洁剂(补充尺寸)
Cern Beam物理学:Matthew Fraser,Eliott Johnson,Nikolaos Charitonidis,Rebecca Taylor Beam操作:Marc Delrieux,Linac3和Leir Teams Beam仪器:Federico Roncarolo,Inaki Ortega Ruiz,Jocelyn Tan,Jocelyn tan,Jocelly brreth,Aboub eboub eboun damhmun NOLI CHAM和IRRAD:Salvatore Danzeca,Federico Ravotti辐射保护:Robert Froeschl,Angelo Infantino Fluka:Francesco Cerutti,Luigi Esposito知识转移:Enrico Chesta R2E:Ruben Garcia Alia,Matteo Brucoli,Rudy ferrea and gire and giuse and n n and Alia Emriskova,Mario Sacristan,Daniel Prelipcean集团和部门管理:Brennan Goddard,Simone Gilardoni,Markus Brugger
摘要 — 我们通过蒙特卡罗模拟、特性良好的静态随机存取存储器 (SRAM) 和射电光致发光 (RPL) 剂量计研究了 CERN 中子飞行时间 (n_TOF) 设施 NEAR 站的中子场,目的是为电子辐照提供中子。模拟了 NEAR 几个测试位置的电子测试相关粒子通量和典型量,并将其与 CERN 高能加速器混合场设施 (CHARM) 的粒子通量和典型量进行比较,突出了相似点和不同点。在参考位置测试了基于单粒子翻转 (SEU) 和单粒子闩锁 (SEL) 计数的 SRAM 探测器(每个探测器具有不同的能量响应)和 RPL 剂量计,并将结果与 FLUKA 模拟进行了对比。最后,将 NEAR 的中子谱与最著名的散裂源和典型的感兴趣环境(用于加速器和大气应用)的中子谱进行比较,显示了该设施用于电子辐照的潜力。