2011124纸,纸板 - PFAS总氟辛硫酸(CAS 1763-23-1)[µg/kg],总氟辛酸(CAS 335-67-1)[µg/kg] [µg/kg] (CAS 355-46-4)[µg/kg],全氟hexanoic酸(CAS 307-24-4)[µg/kg],总全氟二烷酸(CAS 335-76-2)[µg/kg] [µg/kg]全氟二苯卡酸(CAS 307-55-1)[µg/kg],总氟二甲基酸(CAS 72629-94-8)[µg/kg] [µg/kg],全氟甲烷基酸(CAS 376-06-7)[CAS 376-06-7)[µg/kg] [µg],6:2 FTOH(CAS 376-06-7),(CAS 376-06-7),( [µg/kg],8:2 FTOH(CAS 678-39-7)[µg/kg],10:2 FTOH(CAS 865-86-1)[µg/kg] [µg/kg],12:2 FTOH(CAS 39239-77-77-77-7-5) FTA(CAS 27905-45-9)[µg/kg],10:2 FTA(CAS 17741-60-5)[µg/kg],6:2 FTMA(CAS 2144-53-8)[µg/kg],8:2 FTMA(CAS 1996-88-G/KG)定量)
2011124纸,纸板 - PFAS总氟辛硫酸(CAS 1763-23-1)[µg/kg],总氟辛酸(CAS 335-67-1)[µg/kg] [µg/kg] (CAS 355-46-4)[µg/kg],全氟hexanoic酸(CAS 307-24-4)[µg/kg],总全氟二烷酸(CAS 335-76-2)[µg/kg] [µg/kg]全氟二苯卡酸(CAS 307-55-1)[µg/kg],总氟二甲基酸(CAS 72629-94-8)[µg/kg] [µg/kg],全氟甲烷基酸(CAS 376-06-7)[CAS 376-06-7)[µg/kg] [µg],6:2 FTOH(CAS 376-06-7),(CAS 376-06-7),( [µg/kg],8:2 FTOH(CAS 678-39-7)[µg/kg],10:2 FTOH(CAS 865-86-1)[µg/kg] [µg/kg],12:2 FTOH(CAS 39239-77-77-77-7-5) FTA(CAS 27905-45-9)[µg/kg],10:2 FTA(CAS 17741-60-5)[µg/kg],6:2 FTMA(CAS 2144-53-8)[µg/kg],8:2 FTMA(CAS 1996-88-G/KG)定量)
图1:检测与SARS-COV-2病毒感染相关的宿主细胞蛋白和基因。a-f:人类胚胎干细胞衍生的心肌细胞(HESC-CMS)(上)和代表性的荧光图像(n = 6个不同的供体的六个不同供体)人类左心室(人LV)组织(人LV)组织(下部)(下)(下)(下)(下)(下)(下)(下)(下)(n = 6),对人类干细胞衍生的心肌细胞(HESC-CMS)(hESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)(HESC-CMS)进行了代表性荧光共焦图像(n = 3个独立的实验)。用4%甲醛固定细胞和组织,并用针对ACE2(a),TMPRSS2(b),B0AT1(C),Catherepsin B(d),Catherepsin l(e)和Furin(f)的原代抗体进行免疫标记,并与二次抗体conjugody Conjugy conjugugy conjugugy(f) 33342核标记(蓝色)。g:显示仅用二抗和HOECHST 33342核标记处理的对照细胞(上)和组织(下部)。比例尺显示50μm。h:图形数据显示了观察到的hESC-CM种群在可视化后(背景)呈阳性免疫标记的百分比,其靶向针对概述的蛋白质靶标产生的初级抗体的二抗。i:图形数据显示了hESC-CMS中病毒输入和加工基因表达的百万读数(rpm)±SEM(n = 7在三个不同的区分中重复)和人lv(n = 5个个体)。SLC6A19,CTSB和CTSL分别是编码B0AT1,组织蛋白酶B和组织蛋白酶L的基因。
简介:由于乳腺癌的高发性在全球范围内产生了深远的影响,迫切需要改善患者的临床结果,包括努力利用生物活性天然产物作为治疗或预防措施。据报道,柠檬醛(柠檬草精油)对乳腺癌细胞系具有细胞毒性。本研究的目的是确定柠檬醛靶向乳腺癌细胞中醛脱氢酶阳性(ALDH +)细胞的能力。方法:在无血清培养基中培养 MCF-7 和 MDA-MB-231 细胞以产生多细胞肿瘤球体,以评估柠檬醛作为抗增殖剂的作用。用已确定的 IC 50(分别为 50±4.30 µM 和 56±3.17 µM 的柠檬醛)处理细胞以研究柠檬醛的细胞毒性。使用碘化丙啶 (PI) 和 Hoechst 33342 进行染色以确定细胞增殖和活力。最后,通过 ALDEFLUOR 测定法对 ALDH+ 细胞进行量化。通过方差分析 (ANOVA) 和独立 t 检验进行差异分析,p<0.05 被认为具有统计学意义。结果:用柠檬醛处理后,两种癌细胞系中的球体尺寸均减小。PI 和 Hoechst 33342 染色还显示柠檬醛产生了正常细胞和正在发生凋亡和坏死的细胞混合物。ALDE FLUOR 测定法分析显示柠檬醛显着 (p<0.05) 抑制了 MCF7 细胞中 ALDH+ 细胞的数量。结论:证明柠檬醛通过抑制 ALDH 活性减少了 MCF7 乳腺癌球体中的 ALDH+ 细胞群。
背景:切除的完整性是卵巢癌患者的关键预后指标,而肿瘤靶向荧光图像引导手术 (FIGS) 的应用提高了细胞减灭术中腹膜转移的检测率。CD24 在卵巢癌中高表达,已被证明是肿瘤靶向成像的合适生物标志物。方法:研究了高级别浆液性卵巢癌 (HGSOC) 的细胞系和异质患者来源的异种移植 (PDX) 肿瘤样本中的 CD24 表达。将单克隆抗体 CD24 与 NIR 染料 Alexa Fluor 750 结合并评估最佳药理参数 (OV-90,n = 21) 后,对原位 HGSOC 转移性异种移植 (OV-90,n = 16) 进行了实时反馈的细胞减灭术。将术中 CD24 靶向荧光引导的影响与单独的白光和触诊进行了比较,并在术后监测疾病复发(OV-90,n = 12)。在四种临床注释的转移性 HGSOC 原位 PDX 模型中进一步评估了 CD24-AF750,以验证术中引导的转化潜力。结果:与原位 HGSOC 异种移植中的标准白光手术相比,CD24 靶向术中 NIR FIG 显着(47.3%)改善了肿瘤检测和切除,并减轻了术后肿瘤负担。CD24-AF750 允许识别四种 HGSOC PDX 中肉眼无法检测到的微小肿瘤病变。解读:CD24 靶向 FIG 具有转化潜力,可作为改善卵巢癌减瘤手术的辅助手段。资金:本研究由 H2020 计划 MSCA-ITN [675743]、Helse Vest RHF 和 Helse Bergen HF [911809、911852、912171、240222、911974、HV1269] 以及挪威癌症协会 [182735] 和挪威研究理事会通过其卓越中心资助计划 [223250、262652] 资助。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)
在记录中,锂电池由负电极(阳极),正电极(阴极)和电解质组成。这三个元素插入水密聚合物包膜或细胞中。阳极通常由石墨组成。阴极由Lithié过渡金属氧化物组成。主要遇到的电池是LFP(锂,铁,磷酸盐)电池或NMC(锂,镍,锰,钴)电池。电解质主要由氟化锂盐(通常是锂的六氟磷酸盐)和有机碳酸盐型溶剂组成。在热失控或火灾中,电池中存在的元素及其分解产物可以在发射的烟雾中,以颗粒或气体的形式找到。可用的研究[1至3],很少有人在这个主题上,表明烟雾的复杂组成取决于许多参数。将干预电池的组成,其大小,负载,炎症,气体是否不燃烧,其他元素的燃烧(塑料,电缆等)。在开放或封闭空间中的事件过程也应考虑在内。根据研究,以不同浓度发现的气体和颗粒主要包括在没有燃烧的情况下(释放无火烟),有机碳酸盐(碳酸盐
供应链政策声明在我们公司目的的框架内“维持一个更好的世界”,从高级管理层中,我们使我们的领导能力和对有效实施Orion,我们的运营管理系统(OMS)及其公司价值的承诺。我们已经建立了这项政策,以通过所有供应链流程来指导可信赖的关系,并通过所有供应链流程建立共同利益,从而确保遵守利益相关者的需求 - 员工,外部客户,内部客户,承包商,供应商,供应商,当局,社区和业务合作伙伴,透明,负责任地,负责任地,负责任地管理所有关系。要遵守这项承诺,参与供应管理的员工和第三方接受以下行动框架下运营:•根据公司政策执行供应活动,行使全球负责的领导以及在既定的道德和法律框架内; •确保在商品和服务的整个供应周期(规划,供应,执行和关闭)中正确定义角色和职责以及功能的隔离; •开发公平,包容的供应商和承包商的选择流程,提供及时,清晰,一致和必要的信息;保证始终保证透明度和自由竞争; •使用采购计划作为定义商品和服务需求的主要工具; •执行市场智能,以确定组织所需的商品或服务的结构,特征和市场趋势; •设计和实施一个系统,以根据支出和对业务的影响将购买和合同分类为类别。优先选择当地供应商,并评估其发展和加强的选择; •使用总拥有成本作为定义成本结构和合同和采购订单定价的工具; •在提供服务或货物供应之前,按照公司法律部门批准的模型将所有合同协议正式化; •控制和监视购买和库存水平,以满足内部和外部客户的期望,以照顾公司的财务利益; •促进可持续供应计划,以减少项目和运营对环境的影响; •定义供应商评估方法,该方法允许持续改进机会识别; •确保对公司或第三方的资产,工具,消耗品和财产进行正确管理; •分享供应链流程发展中所学的经验教训。遵守本政策的规定需要各个层面的承诺和参与,对于基于安全,正直,团队合作,客户重点和卓越的组织文化是必要的;我们的核心价值观。本政策是对健康,安全和环境政策声明的正式改编,该声明由Stork总统控制和批准。该政策的声明进行了传达,并为在我们的运营控制下工作的所有当前和潜在员工,供应商,承包商,访客和其他第三方都具有强制性适用性。它将每年进行审查,以确保其相关和适当。所有员工都负责确保该政策被积极执行,并且他们应该与客户,利益相关者和社区相互意识到自己的个人责任。ReinaldoRodríguezGonzalez地区副总裁LATAM 2023年3月10日代码:ST27000.000.010013版本:1.0不受控制的副本,如果下载或印刷了fluor Company Stork的所有权利。
图 1. 通过靶向 HER2 阳性细胞的 SSHEL 递送阿霉素可减轻小鼠肿瘤异种移植模型中的肿瘤负担。 (A) SSHEL 粒子组装示意图。 1 µm 直径的介孔二氧化硅珠 (灰色,SiO 2 ) 装载货物 (阿霉素,红色),然后将脂质双层 (磷脂酰胆碱) 应用于表面 (黄色) 以创建货物包裹的球形支撑脂质双层 (SSLB)。 然后将 SSLB 与 SpoVM 肽 (蓝色) 和 SpoIVA 蛋白 (绿色) 和 ATP 一起孵育以促进 SpoIVA 聚合。 插图:SpoIVA 含有与反式环辛烯 (TCO) 结合的工程 Cys。与同源点击化学分子四嗪结合的抗 HER2 亲和体 (蓝色星号) 孵育会形成共价二氢哒嗪键,从而导致亲和体显示在 SSHEL 表面。(B) 显示用 Alexa Fluor 488 (AF488) 荧光染料标记的共价连接亲和体的 SSHEL 的荧光显微照片。左图:使用 DIC 可视化的 SSHEL;右图:来自 AF488 的荧光。(C) 使用流式细胞术测量显示抗 HER2 AF488 (绿色) 的 SSHEL 的荧光,并与显示已知数量的等效可溶性荧光染料分子 (MESF) 的珠子产生的荧光进行比较,以计算每个 SSHEL 颗粒显示的抗 HER2 AF488 的数量。(D) 用 SpoIVA AF488 制成的载阿霉素 SSHEL 的荧光显微照片。左上:DIC;右上:SpoIVA AF488 的荧光;左下:阿霉素的荧光;右下:叠加,阿霉素和 SpoIVA AF488 。B 和 D 中的比例尺:1 µm。(EF)无胸腺裸鼠皮下(sc)接种 SKOV3 HER2 阳性卵巢癌细胞。当肿瘤体积达到 ~100 mm 3 时,在异种移植后的几天内,用 PBS(黑色圆圈)、(E) 60 µg 或 (F) 120 µg 阿霉素(红色方块)、含有等效剂量阿霉素的载阿霉素 SSHEL(绿色三角形)或不含货物的等效数量 SSHEL(蓝色倒三角形)对小鼠进行静脉内 (iv) 治疗,箭头所示(试验 1 为 18、21、25、28、32、35、39、43、46、50、54;试验 2 为 13、16、20、23、27、30、34、37),并测量肿瘤体积。数据点代表平均值;误差为 SD;n=7 只小鼠。P 值:*<.05;****<.001。 (GH) 分别在 (G) 第 60 天、(H) 第 41 天 (H,左) 或第 47 天 (H,右) 从 (EF) 小鼠体内切除的肿瘤。红色星号:溃疡肿瘤;蓝色星号:肿瘤 >1500 mm 3 ;橙色星号:从体重减轻 >10% 的小鼠体内切除的肿瘤。比例尺:10 mm。
Tanner、Rimes 和 Wooten 因支持美国国家核安全局 (NNSA) 和能源部 (DOE) 在萨凡纳河场址 (SRS) 的任务而获得认可。“我很高兴看到这些才华横溢的领导者因其出色的工作而获得认可,”SRNS 商务服务副高级副总裁 Jay Johnson 表示。“她们的贡献对我们的运营产生了持久的影响,并继续激励着供应链中的下一代女性。”SRNS 商务服务高级副总裁 Staci Peters 表示:“我目睹了这些女性为改变我们的业务方式所做的惊人努力,无论是通过仓库创新、简化业务流程,还是寻找创新方式来扩大我们与小型企业的合作。她们不仅在掌舵,而且还在重新定义 SRNS 供应链的未来。”Tanner 因其在小型企业承包和供应链多样性方面所做的工作而被评为“多样性、公平和包容性先锋”。她负责超过 20 亿美元的收购,在 SRNS 24 财年将对不同供应商的支出增加 1.25 亿美元方面发挥了关键作用,其中 60% 以上的支出用于代表性不足的企业。当被问及她 25 财年的目标时,Tanner 说:“我希望进一步实现供应链渠道多样化,解决供应商选择中的偏见,并支持供应链中女性的职业发展。” Rimes 因其在材料管理、库存控制和政府资产处置方面的领导能力而被评为“劳动力创新者”。她领导着一个拥有 150 多名员工的组织,管理着 2000 万美元的年度预算,并监督了数百万美元的项目,包括成功的库存转换和财产处置工作,以支持 SRNS 未来与 NNSA 的任务。“供应链的成功不只是将货物从 A 点运送到 B 点;它还涉及连接人员、流程和可能性,”Rimes 说。 “这一成就也提醒我们,成功不仅建立在我们自身优势的基础上,也建立在导师的智慧和支持之上,他们引导我们达到新的高度。” Rimes 率先推出了 SRNS 首个基于云的化学品库存管理系统,并启动了供应链管理学徒计划,以培养下一代供应链专业人员。 Wooten 因其在采购政策、分包商管理和可持续采购计划方面的工作而被评为“后起之秀”。在 2025 财年,她将与 NNSA 合作,建立一个 NNSA 和 DOE 承包商采购政策库,以加快基准测试并提高整个综合体的效率。她还将探索在采购中使用人工智能进行变革管理。“拥有强大的女性榜样对我的职业生涯和个人生活都非常宝贵,”Wooten 说。“我很荣幸能够体现和展示他们灌输给我的价值观和领导才能。我希望这种认可能够激励更多女性在各自的领域中追求领导角色。” Savannah River Nuclear Solutions 是 Fluor 和 HII 的合作公司,负责位于南卡罗来纳州艾肯附近的能源部萨凡纳河场址的管理和运营。 SRNS-2024-1544
本概况文件概述了美国能源部先进材料和制造技术办公室 (AMMTO) 跨领域高性能材料研究、开发和演示 (RD&D) 投资机会的建议。该概况由下列人员制定:下一代材料与工艺 (NGMP) 恶劣环境材料技术经理 J. Nick Lalena;爱达荷国家实验室 (INL) 代表 Emmanuel Ohene Opare、Gabriel Oiseomoje Ilevbare 和 Anthony Dale Nickens;国家可再生能源实验室 (NREL) 代表 Kerry Rippy 和 Dennice Roberts;橡树岭国家实验室 (ORNL) 代表 William H. Peter、Amit Shyam、Sebastien N. Dryepondt 和 Yarom Polsky;太平洋西北国家实验室 (PNNL) 代表 David W. Gotthold 和 Isabella Johanna van Rooyen;以及 BGS 顾问 Stewart Wilkins。整个部门和这些国家实验室的成员都为该概况做出了重大贡献。其他贡献者包括 AMMTO 的 Alexander Kirk、Huijuan Dai、Diana Bauer 和 Chris Saldaña;AMMTO 承包商 Matt Roney 和 Dwight Tanner;核能办公室 (NE) 的 Dirk Cairnes Gallimore;汽车技术办公室 (VTO) 的 Jerry Gibbs;风能技术办公室 (WETO) 的 Tyler Christoffel;水力技术办公室 (WPTO) 的 Collin Sheppard 和 Colin Sasthav;地热技术办公室 (GTO) 的 Kevin Jones 和 Douglas Blankenship;太阳能技术办公室 (SETO) 的 Kamala Raghavan 和 Matthew Bauer;氢能和燃料电池技术办公室 (HFTO) 的 Nikkia McDonald;阿贡国家实验室 (ANL) 的 Aaron Grecco;以及国家可再生能源实验室 (NREL) 的 Shawan Sheng 和 Jonathan Keller。学术和工业界的贡献者包括博伊西州立大学的 David Estrada;科罗拉多矿业学院的 Zhenzhen Yu;西北大学的 Scott Barnett;德克萨斯 A&M 大学的 Don Lipkin;加州大学洛杉矶分校/高级研究计划署 E 项目的 Laurent Pilon;匹兹堡大学的 Albert To;田纳西大学诺克斯维尔分校的 Steven John Zinkle;弗吉尼亚大学的 Elizabeth Opila;西弗吉尼亚大学的 Shanshan Hu;阿勒格尼技术公司的 Merritt Osborne;Bayside Materials Technology 的 Doug Freitag;BWX Technologies, Inc 的 Scott Shargots 和 Joe Miller;Ceramic Tubular Products LLC 的 Jeff Halfinger;Commonwealth Fusion Systems 的 Trevor Clark;挪威船级社的 Chris Taylor;电力研究院的 David W. Gandy、Marc Albert 和 John Shingledecker;Equinor 的 Rune Godoy;Fluor 的 Gary Cannell;Free Form Fibers 的 Jeff Vervlied;通用原子公司的 Hesham Khalifa 和 Ron S. Fabibish;通用电气的 Lillie Ghobrial、Jason Mortzheim、Patrick Shower、Akane Suzuki、Shenyan Huang 和 Jason Mortzheim;哈里伯顿的 Kyris Apapiou 和 Thomas Pislak;Hatch 的 Gino de Villa;肯纳金属公司的 Paul Prichard。;林肯电气公司的 Badri Narayanan;金属粉末工业联合会的 James Adams 和 Bill Edwards;Metal Power Works 的 John Barnes;Pixelligent Technologies LLC 的 Robert J. Wiacek;雷神技术公司的 Alison Gotkin 和 Prabhjot Singh;Roboze 的 Arash Shadravan;Saferock 的 Torbjorn Vralstad;圣戈班的 John Pietras;斯伦贝谢的 Anatoly Medvedev;西门子公司的 Anand Kulkarni;钢铁贸易公司的 Doug Marmaro;泰纳瑞斯的 Gonzalo Rodriguez Jordan;巴恩斯全球顾问公司的 Kevin Slattery;Timet 的 WIlliam MacDonald;Timken Steel 的 Carly Antonucci;Ultra Safe Nuclear 的 Kurt Terrani;北德克萨斯大学的 Rajarshi Bannerje;以及福伊特水电的 Seth Smith。