摘要 本文介绍了 FLEXOP H2020 EU 项目框架内无人驾驶实验飞机减速板的建模、系统识别、仿真和飞行测试。由于飞机配备了响应缓慢的喷气发动机,因此在加速飞机进行颤振测试后,需要使用减速板来增加减速,以便保持在当局批准的有限空域内进行飞行测试。减速板由伺服电机、开启机构和减速板控制面本身组成。在简要介绍了演示飞机、减速板设计和实验测试台后,本文参考了以前的工作,对建模和系统识别进行了深入描述。系统识别包括确定高度非线性(饱和和负载相关)伺服执行器动力学以及非线性气动和机械特性,包括刚度和惯性效应。相对于之前的工作,新的贡献是考虑了负载打开或关闭的统一伺服角速度极限模型,考虑了整个偏转和飞机空速范围的减速板法向力和阻力模型的详细构建和评估,提出了统一的气动-机械非线性模型,给出了减速板角度、动态压力和伺服扭矩之间的直接关系,以及基于传递函数的机构刚度和惯性效应建模。确定的伺服动力学模型包括系统延迟、内部饱和、前面提到的负载相关角速度极限模型和传递函数模型。基于考虑减速板整个开启角度和动态负载范围的试验台测量验证了伺服模型。还考虑了新的、未发表的测量结果,其中伺服负载随着伺服移动而逐渐增加,以在更现实的情况下验证模型。然后构建完整的减速板模型并在模拟中测试以检查实际行为。下一步,通过在软件在环 (SIL) Matlab 仿真中使用飞机的基线控制器飞行模拟测试轨迹,对集成到 FLEXOP 飞机非线性仿真模型中的减速板模型进行测试。首先,将独立的减速板仿真与 SIL 结果进行比较,以验证减速板模型与非线性飞机仿真的完美集成。最后,使用实际飞行数据来验证和更新减速板模型并显示减速板的有效性。然后比较有和没有空气制动器的减速时间,强调空气制动器在测试任务中的实用性。
1位学生,计算机科学系,BBDNIIT,印度勒克瑙2博士APJ Abdul Kalam技术大学,Vistaar Yojna Jankipuram,勒克瑙,印度摘要摘要“健康与健康”移动操作结合了AI,可以增强医疗保健体验。 我们以用户为中心的平台可无缝访问最先进的AI技术。 通过输入症状,我们的高级算法产生了准确的预测,从而赋予了具有宝贵健康见解的个人。 通过与医疗保健专业人员和互动聊天机器人进行在线咨询,我们的应用程序通过优先考虑便利和质量来彻底改变医疗保健。 我们旨在为石膏提供针对其健康状况的全面和有效的解决方案,并在一个新的健康结果中迎来了新时代。 关键字:基于AI的疾病预测模型,医疗保健监测,以用户为中心的界面,虚拟助手。 I. 简介:将医疗保健的未来与“健康与保健”一起,这是一种无缝整合AI以增强医疗体验的移动操作。 我们以用户为中心的平台可轻松访问最先进的AI技术。 通过输入症状,我们的高级算法提供了准确的预测,从而赋予了具有宝贵健康见解的个人。 超越“健康与保健”的意见超越了与真正的医疗保健专业人员的在线咨询,提供专家建议和实质性建议。 交互式聊天机器人通过提供实时指导和信息来增强用户体验。 [1] II。 “健康与保健”是1位学生,计算机科学系,BBDNIIT,印度勒克瑙2博士APJ Abdul Kalam技术大学,Vistaar Yojna Jankipuram,勒克瑙,印度摘要摘要“健康与健康”移动操作结合了AI,可以增强医疗保健体验。我们以用户为中心的平台可无缝访问最先进的AI技术。通过输入症状,我们的高级算法产生了准确的预测,从而赋予了具有宝贵健康见解的个人。通过与医疗保健专业人员和互动聊天机器人进行在线咨询,我们的应用程序通过优先考虑便利和质量来彻底改变医疗保健。我们旨在为石膏提供针对其健康状况的全面和有效的解决方案,并在一个新的健康结果中迎来了新时代。关键字:基于AI的疾病预测模型,医疗保健监测,以用户为中心的界面,虚拟助手。I.简介:将医疗保健的未来与“健康与保健”一起,这是一种无缝整合AI以增强医疗体验的移动操作。我们以用户为中心的平台可轻松访问最先进的AI技术。通过输入症状,我们的高级算法提供了准确的预测,从而赋予了具有宝贵健康见解的个人。超越“健康与保健”的意见超越了与真正的医疗保健专业人员的在线咨询,提供专家建议和实质性建议。交互式聊天机器人通过提供实时指导和信息来增强用户体验。[1] II。 “健康与保健”是[1] II。“健康与保健”是这种协作方法促进了一个全面且相互联系的世界,创新符合更健康的未来的照顾。问题声明:当前的医疗保健景观在提供及时,准确的健康诊断方面面临重大挑战。传统方法通常涉及冗长的过程,有限的可访问性以及与医疗保健专业人员的实时交流。这些障碍会导致延迟治疗,误诊和增加患者焦虑。此外,缺乏将患者与医疗保健专家联系起来的用户友好平台。“健康与保健”作为解决这些紧迫问题的解决方案。通过无缝整合颤音和AI技术,我们的创新移动操作克服了现有医疗保健系统的局限性。该应用程序的直观界面简化了症状输入,而高级AI算法则确保快速准确的预测,从而及时可靠,我们的平台通过与真正的专业人士提供在线咨询,消除地理约束并提供即时访问专家建议,从而弥合了可访问性差距。交互式聊天机器人通过提供实时支持和指导来增加价值。
似乎又一次成功了。这无疑是一场势均力敌的竞争,但美国制造的波音 CH-47F Chinook 在与俄罗斯 Mi-26T2 的双向竞争中脱颖而出,成为印度空军 (IAF) 满足其重型直升机需求的最具竞争力的产品。虽然这两款直升机在实地评估试验中表现良好,但据了解,Chinook 在价格上胜过其竞争对手,这不仅包括每个平台的单位飞行成本,还包括所有权成本,包括运营和生命周期成本,以及技术转让。国防部 (MoD) 可能会与波音公司展开谈判,合同金额可能超过 10 亿美元(按当前汇率计算为 5,500 千万卢比)。就在 Chinook 直升机获胜之前,波音公司的 AH-64D Apache Block III 刚刚在一场激烈的竞争中被宣布为印度空军攻击直升机项目的获胜者,有趣的是,它的竞争对手再次是俄罗斯的 Mi-28N Night Hunter。22 架阿帕奇直升机的订单价值 14 亿美元(770 亿卢比),还包括供应 812 枚 AGM-114L-3 Hellfire Longbow 导弹和 342 枚 AGM-114R-3 Hellfire-II 导弹、245 枚 Stinger Block I-92H 导弹和 12 台 AN/APG-78 火控雷达。波音公司确实为印度空军雄心勃勃的现代化计划做出了巨大贡献,因为它早前获得了 41 亿美元(2250 亿卢比)的合同,为印度空军装备 10 架 C-17 环球霸王 III 战略重型运输机。这还不是全部。在印度军方的大型招标中,EADS/空客军用公司再次输给莫斯科,在印度空军六架新一代空中加油机 (RFA) 的招标中胜出。印度空军首席空军元帅 N.A.K. 重申,印度空军的现代化和转型正在按计划进行。布朗在本期杂志中刊登了他的专访第二部分,其中他解释了国防采购程序 (DPP) 如何帮助简化采购流程并缩短采购时间。随着渥太华大西洋理事会爆料印度和巴基斯坦“第二轨”小组达成“非军事化”锡亚琴冰川的协议,“锡亚琴冰川纠纷”问题再次浮出水面。正如预期的那样,这则消息在国防界引起了轩然大波
EADS CASA 的军用运输机部门 (MTAD) 在先进飞机结构的设计和制造方面拥有丰富的经验。这包括碳纤维和金属结构,以及自动化流程(制造和组装)方面的经验。目前,该部门为一系列航空项目开发或生产飞机结构:水平稳定器(A400M、Falcon 7X)、飞行控制面(B-777、B-737、Falcon 7X、A400M、欧洲战斗机)、发动机短舱、纤维铺放技术风扇罩(A340-500/600、A380、A318)、金属结构(A380 机腹整流罩、A318 风扇罩、A320 第 18 部分、A330/340 中央箱等)、前缘(空客)等。MTAD 正在生产旨在满足世界各国空军对加油机/运输机的不同需求的解决方案。 MTAD 已经认识到任务要求的广泛性,并基于两个空中客车平台提供定制解决方案:久经考验的 A310-300 和 A330-200。MTAD 有能力设计、制造、认证和销售整机。它拥有成功的轻型和中型军用运输机系列,如 C-212(销售超过 400 架)、CN-235(销售超过 300 架)和 C-295(销售超过 60 架)。这些产品是对 EADS 其他产品组合的补充,也是在塞维利亚的 EADS CASA 工厂建立重型军用运输机 A400M 总装线的原因。鉴于其在 A330 MRTT 和 A400M 认证过程中的飞机结构测试责任,MTAD 与 Alava Ingenieros 和 LMS International 合作,更新了用于地面振动测试 (GVT) 的测量硬件和软件。新系统已部署,测试团队也接受了在 EADS CASA 的 A310 加油杆演示飞机上进行演示 GVT 的培训。除了这次测试的结果,我们还展示了在 A330 MRTT 上进行认证测试的附加结果。EADS CASA 的 A310 加油杆演示飞机于 2007 年 1 月 30 日完成了第 12 次试飞,加油杆首次成功展开(图 1a)。2006 年 3 月 30 日,经过 3 年的开发,ARBS(空中加油杆系统)飞行测试项目的第一阶段成功完成,EADS CASA 完成了新一代加油杆的设计和制造。飞行测试项目旨在证明安装在空客平台上的新型加油杆的性能,例如,它包括打开加油机的工作范围或与 F-16 进行干/湿接触。这些测试的初步结果表明:飞机平台和吊杆结构没有任何形式的颤振
申请人应知道,联邦航空管理局已发布备忘录,指出在飞机、滑翔机和飞艇外部安装乙烯基覆盖收缩包装存在安全问题,而油漆和除冰靴等其他外部装饰则不存在这些问题。这些问题包括重大甚至灾难性的危险,因此不接受获得联邦航空管理局现场批准的安装。只有联邦航空管理局 (FAA) 型号合格证 (TC)、修订型号合格证 (ATC) 和补充型号合格证 (STC) 才适用于此类安装。本备忘录不适用于放置在机身或尾翼有限区域上的乙烯基贴花或徽标。以下是安装乙烯基收缩包装覆盖物的安全问题,申请人必须对任何 TC/ATC/STC 申请进行评估:1. 未经适当的工程评估和/或测试,不得将乙烯基收缩包装放置在任何控制面或控制面突出部上:a.不考虑对颤振特性的影响(无论表面是否质量平衡)以及 b. 安装会改变相邻表面之间现有的间隙(有负载和无负载)。2. 切割乙烯基板以使其适合时划伤飞机蒙皮,这会导致裂缝,尤其是在增压飞机中。3. 堵塞燃油通风口、静压孔、铰链、排水孔等,使其无法工作或改变静压孔上的气流。4. 使用喷灯的明火涂抹材料。这对油箱和通风口、敏感天线,尤其是复合材料部件来说是一个问题,因为复合材料部件的固化温度远低于喷灯的温度。5. 遮盖必需的外部飞机标记和紧急出口。6. 乙烯基板在表面或旋转部件上的附着力丧失,卡住控制面或损坏发动机。7. 静电积聚导致油箱内或周围放电,并造成无线电/导航干扰。 8. 窗户和挡风玻璃上贴有透明乙烯基,影响飞行员的视线。9. 清除关键表面积冰的影响。10. 材料的可燃性,包括雷击,尤其是发动机排气口附近和发动机短舱周围。可燃性测试样本应从涂有乙烯基收缩包装的发动机罩/短舱上制作。11. 包装被雨水或冰雹剥落。12. 结构和外壳上的裂缝和腐蚀的遮盖。13. 安装有水龙头的乙烯基收缩膜的使用寿命。强制拆除前需要多长时间。14. 除冰液对薄膜的影响。政策备忘录可应要求提供。
申请人应意识到,FAA已发布了一份备忘录,指出在飞机,滑翔机和飞艇的外部安装乙烯基覆盖物的安全性问题,而这些收缩包裹与其他外部(如油漆和除法靴子)不存在。这些问题包括对灾难性的主要危害,因此不可接受FAA现场批准的装置。仅接受此安装的联邦航空管理(FAA)类型证书(TC),修订类型证书(ATC)和补充类型证书(STC)。此备忘录不适用于放置在机身或额外区域有限区域的乙烯基贴花或徽标。以下是安装乙烯基收缩包裹覆盖物的安全问题,申请人必须对任何TC/ATC/STC申请进行评估:1。没有适当的工程评估和/或测试,乙烯基收缩包裹不能放在任何控制表面或控制表面选项卡上:不考虑对颤动特征的影响(表面是否质量平衡)和b。该安装将在没有加载和不加载的情况下更改相邻表面之间的现有间隙。2。在切割乙烯基板时,为飞机的皮肤得分,这可能会开始裂缝,尤其是在加压飞机中。3。阻止燃油通风口,静态端口,铰链,排水孔等,使其无法工作或在静态端口上更换气流。4。使用打火器的开火涂抹材料。5。覆盖所需的外部飞机标记和紧急出口。这是围绕油箱和通风孔,敏感天线,尤其是复合零件的关注点,该复合零件的温度远低于喷灯的温度。6。乙烯基板在表面上或旋转部位上失去粘附,并抑制了控制表面或折衷发动机。7。静态堆积,导致油箱内或周围的电气放电并引起无线电/导航干扰。8。用透明的乙烯基对窗户和挡风玻璃的着色,这损害了飞行员的视野。9。对临界表面上冰堆积的去除的影响。10。材料的易燃性,包括雷击,尤其是在发动机排气和发动机固定周围。 可易燃性测试样品应从涂有乙烯基收缩包裹的整流罩/nacelle中构建。 11。 从雨或冰雹中剥离包裹。 12。 掩盖结构和皮肤上的裂缝和腐蚀。 13。 乙烯基收缩带有TAP安装的寿命。 在强制删除之前多长时间。 14。 脱冰液对膜的影响。 可应要求提供策略备忘录。材料的易燃性,包括雷击,尤其是在发动机排气和发动机固定周围。可易燃性测试样品应从涂有乙烯基收缩包裹的整流罩/nacelle中构建。11。从雨或冰雹中剥离包裹。12。掩盖结构和皮肤上的裂缝和腐蚀。13。乙烯基收缩带有TAP安装的寿命。在强制删除之前多长时间。14。脱冰液对膜的影响。可应要求提供策略备忘录。
申请人应意识到,FAA已发布了一份备忘录,指出在飞机,滑翔机和飞艇的外部安装乙烯基覆盖物的安全性问题,而这些收缩包裹与其他外部(如油漆和除法靴子)不存在。这些问题包括对灾难性的主要危害,因此不可接受FAA现场批准的装置。仅接受此安装的联邦航空管理(FAA)类型证书(TC),修订类型证书(ATC)和补充类型证书(STC)。此备忘录不适用于放置在机身或额外区域有限区域的乙烯基贴花或徽标。以下是安装乙烯基收缩包裹覆盖物的安全问题,申请人必须对任何TC/ATC/STC申请进行评估:1。没有适当的工程评估和/或测试,乙烯基收缩包裹不能放在任何控制表面或控制表面选项卡上:不考虑对颤动特征的影响(表面是否质量平衡)和b。该安装将在没有加载和不加载的情况下更改相邻表面之间的现有间隙。2。在切割乙烯基板时,为飞机的皮肤得分,这可能会开始裂缝,尤其是在加压飞机中。3。阻止燃油通风口,静态端口,铰链,排水孔等,使其无法工作或在静态端口上更换气流。4。使用打火器的开火涂抹材料。5。覆盖所需的外部飞机标记和紧急出口。这是围绕油箱和通风孔,敏感天线,尤其是复合零件的关注点,该复合零件的温度远低于喷灯的温度。6。乙烯基板在表面上或旋转部位上失去粘附,并抑制了控制表面或折衷发动机。7。静态堆积,导致油箱内或周围的电气放电并引起无线电/导航干扰。8。用透明的乙烯基对窗户和挡风玻璃的着色,这损害了飞行员的视野。9。对临界表面上冰堆积的去除的影响。10。材料的易燃性,包括雷击,尤其是在发动机排气和发动机固定周围。 可易燃性测试样品应从涂有乙烯基收缩包裹的整流罩/nacelle中构建。 11。 从雨或冰雹中剥离包裹。 12。 掩盖结构和皮肤上的裂缝和腐蚀。 13。 乙烯基收缩带有TAP安装的寿命。 在强制删除之前多长时间。 14。 脱冰液对膜的影响。 可应要求提供策略备忘录。材料的易燃性,包括雷击,尤其是在发动机排气和发动机固定周围。可易燃性测试样品应从涂有乙烯基收缩包裹的整流罩/nacelle中构建。11。从雨或冰雹中剥离包裹。12。掩盖结构和皮肤上的裂缝和腐蚀。13。乙烯基收缩带有TAP安装的寿命。在强制删除之前多长时间。14。脱冰液对膜的影响。可应要求提供策略备忘录。
I. 简介 飞行测试是任何新型飞机开发过程的核心部分。作为测试的一部分,记录飞机在各种机动过程中的响应,从中可以确定描述其特性的飞机稳定性系数。然后可以使用这些估计值来验证或更新现有的数值模型。但是,测量到的响应有噪声、有偏差,并且可能以不同的速率采样,这可能导致模型不准确。因此,在估算这些稳定性系数之前,飞行路径重建 (FPR) [ 1 , 2 ] 通常是过滤和检查收集的飞行测试数据的一致性的第一步。FPR 是一种过滤技术,通过将飞机运动方程与响应测量相结合来重建飞机状态的时间历史。在这些方程中,飞机被表示为在空中移动的点质量。然而,为了提高燃油效率,飞机结构变得更轻,从而也更灵活。这反过来导致飞机的结构动力学与飞机飞行动态响应具有更大的相互作用。因此,为了正确地模拟这种相互作用,还需要重建结构的动力学和刚体状态。除了气动弹性建模外,跟踪飞机结构变形对于结构等应用也很重要
EADS CASA 的军用运输飞机部门 (MTAD) 在先进航空结构的设计和制造方面拥有丰富的经验。这包括碳纤维和金属结构,以及自动化流程(制造和组装)方面的经验。目前,该公司为一系列航空项目开发或生产飞机结构:水平稳定器(A400M、Falcon 7X)、飞行控制面(B-777、B-737、Falcon 7X、A400M、欧洲战斗机)、发动机短舱、纤维铺放技术风扇罩(A340-500/600、A380、A318)、金属结构(A380 机腹整流罩、A318 风扇罩、A320 第 18 部分、A330/340 中央箱等)、前缘(空客)等。MTAD 正在生产旨在满足世界各国空军对加油机/运输机不同需求的解决方案。MTAD 已经认识到广泛的任务需求,并基于两个空客平台提供定制解决方案:久经考验的 A310-300 和 A330-200。MTAD 有能力设计、制造、认证和销售整机。它拥有成功的轻型和中型军用运输机系列,如 C-212(销售超过 400 架)、CN-235(销售超过 300 架)和 C-295(销售超过 60 架)。这些产品是对 EADS 其他产品组合的补充,这也是在塞维利亚的 EADS CASA 工厂建立重型军用运输机 A400M 总装线的原因。鉴于其在 A330 MRTT 和 A400M 认证过程中的飞机结构测试责任,MTAD 与 Alava Ingenieros 和 LMS International 合作,更新了用于地面振动测试 (GVT) 的测量硬件和软件。新系统已部署,测试团队接受了 EADS CASA 的 A310 吊杆演示飞机上演示 GVT 的培训。除了本次测试的结果外,我们还展示了 A330 MRTT 认证测试的其他结果。EADS CASA 的 A310 吊杆演示飞机于 2007 年 1 月 30 日完成了第 12 次试飞,吊杆首次成功展开(图 1a)。2006年3月30日,经过3年的研发,ARBS(空中加油吊杆系统)飞行测试项目第一阶段顺利完成,EADS CASA完成了这一新一代加油吊杆的设计和制造。飞行测试项目旨在验证安装在空中客车平台上的新型吊杆的性能,其中包括打开加油机的工作范围或与F-16进行干/湿接触等。这些测试的初步结果表明:飞机平台和吊杆结构没有任何形式的颤振
1.中性粒细胞减少症:如有发热或其他感染迹象,必须及时评估并积极治疗。2.出血事件:接受 zanubrutinib 治疗的患者中约有一半会发生轻微出血事件,包括瘀伤、鼻出血和瘀点。1% 至 4% 的患者会发生严重出血事件(严重或 3 级或更高出血)。正在服用抗凝剂或抑制血小板功能药物的患者应慎用。手术前后 3 至 7 天暂停治疗;根据出血风险决定术后是否重新开始用药。3.感染:zanubrutinib 治疗期间经常报告细菌、病毒、真菌和机会性感染。约 20% 的报告感染与并发中性粒细胞减少症有关。2.5% 的患者报告了致命感染。对于感染风险较高的患者,应考虑预防性用药,并适当管理感染。 4. 第二原发性恶性肿瘤:接受 zanubrutinib 治疗的患者中,已有严重及致命性恶性肿瘤的报道。皮肤癌是最常见的第二原发性恶性肿瘤,9% 的患者报告了该病,包括基底细胞癌、鳞状细胞癌和恶性黑色素瘤。应监测可疑皮肤病变的出现,并建议患者采取适当的防晒措施。5. 药物相互作用:zanubrutinib 是 CYP3A4 的底物。与强效或中效 CYP 3A4 抑制剂合用可能会增加 zanubrutinib 的暴露量;应尽可能避免。同时使用 zanubrutinib 时可能需要减少剂量。zanubrutinib 与强效 CYP 3A4 诱导剂合用可能会降低 zanubrutinib 的暴露量;应尽可能避免。更多信息,包括常见药物相互作用的剂量减少指导,请参阅《癌症药物手册》。 6. 服用布鲁顿酪氨酸激酶 (BTK) 抑制剂的患者中,已有高血压报告。每次就诊时都应测量血压,如果出现高血压,应立即治疗。高血压会增加 BTK 抑制剂治疗中心脏并发症的风险。7. 据报道,使用 zanubrutinib 的患者可能会出现心房颤动和心房扑动;有心脏危险因素、高血压或急性感染的患者,风险可能会增加。8. 淋巴细胞增多症:据报道,在开始使用 zanubrutinib 治疗时,可能会出现淋巴细胞增多症。研究中,淋巴细胞增多症的中位发病时间为 4 周,淋巴细胞增多症的中位持续时间为 8 周。无症状淋巴细胞增多症的患者应继续使用 zanubrutinib 治疗。9. 间质性肺病 (ILD):据报道,在 zanubrutinib 治疗期间,患者可能会出现 ILD 的体征和症状。应监测患者是否出现 ILD 的体征和症状。如果疑似 ILD,请暂停治疗。如果确诊 ILD,则应停止治疗。 10. 肝功能损害:重度肝功能损害患者,请将赞布替尼剂量减至每日两次,每次80毫克。监测不良反应。轻度或中度肝功能损害患者无需调整剂量。监测毒性。11. 乙肝病毒复发:更多详情,请参阅 SCHBV 方案。如有任何关于此治疗方案的问题或疑问,请致电 Alina Gerrie 医生或肿瘤组代表 (604) 877-6000 或 1-800-663-3333。