房屋飞行,穆斯卡·家族(Musca Housea),是许多病原体的机械载体,对人类和动物的健康构成了重大风险。二十多年前,发现了穆斯卡家族唾液腺肥大病毒(MDSGHV),从而感染了男性和女性苍蝇,并破坏了交配和生殖过程。MDSGHV可以感染各种组织,但其主要复制位点是苍蝇唾液腺。众所周知,节肢动物唾液腺不仅在获取食物,而且在传播病原体中起着重要作用。因此,了解向量唾液腺的组成以及载体与病原体成分之间的相互作用对于制定未来的控制策略至关重要。为此,我们对感染和未感染的房屋蝇的唾液腺进行了全面的RNA测序。我们的分析总共确定了6,410个推定的序列,其中6,309个源自M. tourplea,101个来自MDSGHV,分为25个官能团。此外,受感染和未感染的唾液腺之间的差异表达分析显示,有2,852个显着调节的转录本,突出了MDSGHV感染触发的深刻转录变化。总的来说,这些发现不仅加深了我们对家长唾液腺组成的理解,而且还提供了对病毒媒介相互作用的宝贵见解,这可以作为理解其他医学相关相互作用的模型。
摘要:作为热化学能存储领域研究的一部分,本研究旨在调查奥地利三家不同纸浆和造纸厂的流化床反应器产生的三种粉煤灰样品作为热化学能 (TCES) 和 CO 2 存储材料的潜力。 通过不同的物理和化学分析技术分析了选定的样品,例如 X 射线荧光光谱 (XRF)、X 射线衍射 (XRD)、粒度分布 (PSD)、扫描电子显微镜 (SEM)、电感耦合等离子体原子发射光谱 (ICP-OES) 和不同气氛 (N 2 、CO 2 和 H 2 O/CO 2 ) 下的同步热分析 (STA)。 为了评估环境影响,还进行了浸出试验。 通过 XRF 分析验证了 CaO 作为 TCES 的有希望的候选者的含量,其范围为 25–63% (w/w)。 XRD 结果表明,所有粉煤灰样品中的 CaO 均以游离石灰(3-32%)、方解石(21-29%)和硅酸盐的形式存在。STA 结果表明,所有粉煤灰样品均能满足 TCES 的要求(即充电和放电)。所有样品都进行了三次循环稳定性测试,结果表明在前三个反应循环中转化率有所降低。根据 STA 结果,所检查样品的能量含量高达 504 kJ/kg。在 CO 2 /H 2 O 气氛中,由于这些样品中已经存在游离石灰(CaO),因此在第一次放电步骤中,两种粉煤灰样品可以释放更多的能量(~1090 kJ/kg)。基于直接法和干法,这些粉煤灰样品的 CO 2 储存容量在每吨粉煤灰 18 至 110 kg 之间。浸出试验表明,所有重金属均低于奥地利垃圾填埋条例的限值。可以说,通过 TCES 和 CO 2 封存来增值纸浆和造纸工业的粉煤灰是可行的。然而,仍需进行进一步的研究,例如循环稳定性改进、系统集成和生命周期评估 (LCA)。
无人机已成为商业、安全工作和家庭休闲活动的固定装置。研究人员已经开始探索无人机如何帮助残疾人驾驶并充当辅助设备。我们的工作重点是视力障碍人士,并调查是什么促使他们驾驶无人机。我们对视障成年人进行了一项调查,以了解他们对无人机驾驶的普遍兴趣和以往的无人机使用经验。从 59 份调查回复中,我们采访了 13 位参与者,详细说明他们如何设想使用无人机,以及不同的反馈和驾驶模式如何使飞行体验更容易获得。我们发现,我们的参与者对航空、尝试新技术、环境探索以及寻找与视力正常的家庭成员一起进行的合作活动有着浓厚的兴趣,这延伸到了对驾驶无人机的兴趣。这项研究有助于为未来无人机的设计场景和可访问功能奠定基础。
更改。[1]这需要将太阳能电池的生产提高到Terawatt量表[2],同时降低生产成本。激光处理已成为生产太阳能电池的估计工具。[3 - 5]目前,它主要用于生产钝化发射极后细胞(PERC)的激光接触开口(LCO)过程。[6]由于有限的可用性,银消耗是大规模制造的挑战。[7]未来的无银方法,例如电镀[8]或铝制金属,[9]也需要激光开口。在大多数应用中,激光消融过程仅需很少的消耗品。因此,对LCO系统的所有权成本(COO)的主要贡献包括收购,劳动力和方面的成本,其成本超过75%。[10]因此,增加吞吐量是降低每个细胞处理成本的非常有效的方法。对于诸如化学批处理处理之类的前端过程,对于晶圆尺寸M10(182毫米),晶圆吞吐量预计将从10 200增加到16 700 wph。[6]这增加了70%以上。对于激光过程,例如激光掺杂的选择性发射极(LDSE)和LCO,预计吞吐量增益仅为约7000至10 000 wph,即约为42%。[6]这种错误匹配也是由于以下事实:基于批处理的过程(例如湿化学碱性纹理或炉子扩散和氧化)可以通过增加批处理大小来有效地扩展。[11]
摘要。建筑业是全球CO 2排放的主要贡献者,特别是通过波特兰水泥生产。在印度尼西亚,现成混凝土中的粉煤灰利用提出了一种有希望的可持续建筑方法。该策略通过潜在减少排放和支持全球气候变化的缓解工作来使基础设施的发展与环境目标保持一致。这项研究调查了将粉煤灰纳入日益卡尔塔 - 巴尼(Yogakarta-Bawen)收费公路项目的现成混凝土的环境影响,并特别侧重于减少CO 2排放。认识到可持续建筑实践在解决气候变化中的关键作用,该研究旨在量化在FC 30 MPA Ready-Mix混凝土中用粉煤灰代替40%的波特兰水泥的环境收益。全面的分析表明,尽管良好的骨料有边缘增加,但与粗骨料相关的排放量下降了18%,水泥的排放量降低了55%。总体而言,该方法的总CO 2排放量显着降低了47%,这证明了粉煤灰在增强建筑材料的可持续性方面的有效性。这种实质性的减少强调了粉煤灰整合的潜力,这是减轻大规模基础设施项目的环境影响的关键策略。关键字:CO 2,发射,粉煤灰,现成混凝土,还原
摘要。镍是具有工业工厂潜在用途的重金属之一。对镍的高需求导致各种努力从废物中恢复镍。通常,金属回收是使用大量化学品进行的,因此成本很高,对环境有害。使用微生物(例如细菌)回收金属是非常有前途的。因此,这项研究将使细菌与煤灰储存中分离并表征细菌,并通过生物介导过程分析这些细菌在镍恢复中的潜力。细菌分离,并将样品接种到选择性培养基中的细菌中,以在生物素料中起作用。已分离的细菌将被选择和表征。此外,这些细菌还测试了它们通过生物渗透过程从煤灰中恢复镍的潜力。生物无能的效率以确定细菌恢复镍的效力。这项研究的结果表明,成功分离了八种细菌。表征结果表明两种革兰氏阴性菌和两个革兰氏阳性细菌。在八种细菌中,与其他细菌相比,八种细菌中有四种通过良好的生长和更高的镍恢复显示了镍恢复的潜力。这些细菌也可能用于其他金属生物素器过程。
我声明我有权向 LufABw 提交此申请,并且此申请中的所有信息均正确且完整。 / 我声明我有向 LufABw 提交此申请的法律能力,并且本申请表提供的所有信息均正确且完整。
1 Sert -O(DEAS)的Agroning工程系,联邦Sergipe大学(UFS),Eng。Jorge Neto -KM 03,S/N,我们的Gl O Ria 49680-000的圣母,如果是巴西; nilsononufv@gmail.com 2 Tri-Mineiro科学技术学院农学系(IFTM校园Uberl dnia),Uberl-NDIA 38400-970,MG,巴西MG; Philipe.corcino@gmail.com 3蔬菜生产毕业计划,Jeqeitinhonha联邦大学和Mucuri,JK Campus,Diamantina 39100-000,MG,巴西; gildiano.oliveira@ufvjm.edu.br(g.s.d.o.); edmond.barry@ufvjm.edu.br(E.J.D.V.B.); marcus.alvarenga@ufvjm.edu.br(M.A.S.)4 Agroning Engineering系(DEA),联邦Sergipe大学(UFS),基督教49100-000,SE,巴西; alisson.da-silva-santana@unl.edu(A.D.S.S.S. ); bacci.ufs@gmail.com(L.B.) 5昆虫学和植物病理学劳动,北弗卢米宁州立大学达西·里贝罗(UENF),坎波斯·戈斯塔卡兹斯28013-602,巴西RJ; silva.gersonadriano@gmail.com 6森林科学毕业生计划,Jequitinhonha联邦大学和Mucuri,JK Campus,Diamantina 39100-000,巴西MG; aguiar.fernanda@ufvjm.edu.br 7,UFV校园,UFV校园联邦大学昆虫学系,Viçosa36570-000,巴西毫克; picanco@ufv.br 8蔬菜生产研究生的计划,托坎特斯联邦大学,古鲁皮校园,古鲁皮77402-970,到巴西; rsarmento@mail.uft.edu.br *通信:ricardo.siqueira@ufvjm.edu.br.br4 Agroning Engineering系(DEA),联邦Sergipe大学(UFS),基督教49100-000,SE,巴西; alisson.da-silva-santana@unl.edu(A.D.S.S.S.); bacci.ufs@gmail.com(L.B.)5昆虫学和植物病理学劳动,北弗卢米宁州立大学达西·里贝罗(UENF),坎波斯·戈斯塔卡兹斯28013-602,巴西RJ; silva.gersonadriano@gmail.com 6森林科学毕业生计划,Jequitinhonha联邦大学和Mucuri,JK Campus,Diamantina 39100-000,巴西MG; aguiar.fernanda@ufvjm.edu.br 7,UFV校园,UFV校园联邦大学昆虫学系,Viçosa36570-000,巴西毫克; picanco@ufv.br 8蔬菜生产研究生的计划,托坎特斯联邦大学,古鲁皮校园,古鲁皮77402-970,到巴西; rsarmento@mail.uft.edu.br *通信:ricardo.siqueira@ufvjm.edu.br.br
尽管如此,在成员国的运营计划中,已经观察到技术差距,技术和工具的协调不足以及技术创新的滞后改编。此外,这种环境友好的技术正在与常规的害虫控制方法不断竞争。可以在用于针对果蝇虫害的各个组成部分中观察到这种情况,包括菌落管理,昆虫的质量,灭菌和辐射后处理和释放。也可以在包括监视系统和种群抑制方法在内的现场组件中观察到。应用研究需要采用这些技术并提高成本效益。优化和协调SIT的使用将进一步为这项基于核技术的技术提供比较的优势。
地球聚合物是从天然矿物质(粘土),废物或工业副产品的碱性激活获得的低碳粘合剂,以生成具有陶瓷特征的产品[1,2]。铝硅酸盐类型的反应性化合物迅速溶解在碱性溶液中,并形成Si型(OH)4-和Al(OH)4- [3,4]的羟基化低聚物。在多质量反应期间,四面体单元交替结合,形成构成地球聚合物的无定形格子。近年来,随着具有较低能量消耗和强大特性的粘合剂,地质聚合物已引起了很多关注,包括良好的机械性能,低液体渗透性,对高温的抵抗力和其他酸的攻击[5] [5],并大大降低了CO 2排放,更环保友好友好的材料[6 E 9]。高岭土和其他天然粘土,在通过热处理转化为梅托蛋白和钙化粘土后,低钙灰灰是合成地球聚合物的最常见前体[10]。近年来,重点一直放在高可用的原材料上,例如钙化粘土[11,12]。粘土通常由粘土矿物和其他相关的混合物组成[13]。与高岭土不同,粘土的主要缺点用作获得地球聚合物的先驱是组成的变异性和控制热激活过程的参数的控制。常用的粘土被用作地球聚合物前光照器,必须将其钙化以完全脱氢氧化,以避免形成新的稳定相,例如尖晶石[13 E 15]。因此,Buchwald等。在500至800 C之间的粘土矿物质的热激活通常会导致粘土矿物的脱羟基化[16]。其他作者研究了粘土的碱性激活。[17]研究了在550至950 c之间热激活的伊利石/蒙脱石粘土的适用性,形成地球聚合物。Essaidi等。[18]研究了在不同温度下激活的高岭土粘土和富含赤铁矿的伊利石 - 氯化粘土的碱性激活。得出的结论是,由于粘土矿物质的非晶化,Illite-Kaolinitc粘土的反应性优于高岭土粘土的反应性,获得了具有更好的机械性能的材料。Selmani等。[9]评估了两个商业元评估和三个突尼斯粘土,具有不同的化学成分,纯度和反应性,以确定它们用于地球聚合物合成的潜力。用粘土取代梅托氏蛋白,有利于多面反应。所使用的碱性激活剂是强碱性溶液,碱氢氧化物或水合碱硅酸盐。然而,由于需要高于1300℃的温度,因此通过非常昂贵且高度污染的生态过程进行了用作活化剂的碱性硅酸盐的产生,将大量CO 2排入大气中。因此,需要寻找新的替代激活解决方案,而环境和经济影响较小。改善碱性或碱性水泥的经济和生态平衡的一种方法是为传统碱性激活剂找到碱性(总或部分)。近年来,使用生物质来产生热量和电力,以便施加废物并减少CO 2排放