和往常一样,我很享受本周的飞行课程。我想补充一点,飞行员与电线相撞的另一个原因是他们“只见树木不见森林”。为了说明这一点,我和我的好朋友比尔·钱德勒一起编队飞往第一飞行机场 (KFFA)。美丽的飞行,CAVU 日,飞向航空的发源地。我们绕着机场盘旋,进行休息,然后按照航线飞行,降落在 20 号跑道上。当我飞过海滩,在最后进近时,我注意到跑道超限空地的尽头有一栋大型多层住宅。我记得当时觉得那是一个建造大房子的奇怪地方,我应该在最后进近时保持一点高度以越过它。我的注意力被跑道和那栋房子分散了。着陆和停车后,比尔走到我面前,问我:“……你觉得最后进近的那些电线怎么样?”我看着他,说:“……什么电线?”房子对面的街道上,有三根高高的输电线。我从来没有见过它们。
当精确的飞行仪表使飞行员不再需要与地面保持目视接触时,飞机就成为一种实用的交通工具。飞行仪表对于安全飞行至关重要,飞行员必须对其操作有基本的了解。目视飞行规则 (VFR) 下操作所需的基本飞行仪表是空速指示器 (ASI)、高度计和磁方向指示器。除此之外,仪表飞行规则 (IFR) 下的操作还需要陀螺仪转弯速率指示器、滑行指示器、可调节气压的灵敏高度计、用扫秒指针或数字显示显示小时、分钟和秒的时钟、陀螺仪俯仰和倾斜指示器(人工地平仪)和陀螺仪方向指示器(定向陀螺仪或等效装置)。
Seaworthy STEM™ in a Box 活动是一项海军计划,旨在为 K-12 教师和学生提供增强的海军相关、符合标准的实践活动。该计划的组成部分包括精心策划的课堂活动,旨在在海军相关内容领域建立深入的概念理解。该工具包还包括综合课程计划、材料清单、科学背景信息、STEM 相关素养书籍和学生活动表。Seaworthy STEM™ in a Box 计划旨在支持教师选择内容、获取材料并在课堂上实施更多实践 STEM 活动。增加学生参与实践 STEM 活动的机会,还可以提高对 STEM 职业道路的认识,让学生参与 STEM,并支持学生在 STEM 内容方面的能力发展。
备注。1.如果整个月没有在 A、B 或 C 部分列出的飞机或飞行模拟器上飞行,请在 a 列中输入月份,并在 b 至 d 列中输入注释“无飞行时间”。 2.以与单独飞机类型相同的方式输入飞行模拟器时间(军用)。3.按座位名称记录的飞机和飞行模拟器条目(DA 表格 2408-12,区块 6c)将使用适当的字母进行记录。在 DA 表格 759-2 上为每个指定(FS、BS)座位位置使用单独的部分。例如:AH–64D(FS),2B40(BS)。4.填写表格时,如果某个方框不适用,请留空,除非说明另有说明。图例:BS-后座 CIV-政府机构文职雇员 CTR-政府承包商 DA-陆军部 DAC-陆军部文职人员 FS-前座
单人操作,很明显布局上花了很多心思。KISS 方法论——保持简单,愚蠢——在整个飞机中显而易见。一个很好的例子是安装在仪表板上的单个燃油截止阀。这是飞行员唯一的燃油控制装置。双机翼油箱通过重力向中央油底壳油箱供油,油箱配有阀门系统,可自动平衡燃油流量,最终通过电动增压泵和发动机驱动的机械泵输送到发动机。除了常见的油箱仪表外,机翼油箱和油底壳油箱的燃油管路中还有光学燃油传感器,并配有指示灯以警告燃油量非常低。还安装了数字燃油流量计算机,显示流速、燃油消耗和剩余燃油。坐下后,头顶系统面板增强了大飞机的感觉,该面板容纳了大多数电气开关和断路器,并有两个独立的电气总线系统,以确保可靠性和冗余性。
让 18 名跳伞者在 12 分钟内到达 12,000 英尺高空,并在他们到达之前着陆,这是其他飞机无法做到的事情。从一小段崎岖的乡村地带运送几吨过磷酸盐是另一回事,但能够同时完成这两件事的飞机也可以成功完成许多其他具有挑战性的任务。很少有农用飞机设计能够存活超过 60 年,而且可能没有一种设计能够像新西兰 Air Part 的 FU24 Fletcher(最初的)那样发展得如此令人印象深刻,尽管它配备了 235 马力的 Continental O-470 动力装置,但它却运送了近一吨过磷酸盐。FU24 独特的轮廓、其内侧机翼部分与停机坪平行以及外侧末端弯曲成显眼的 Jodel 式 8˚ 二面角,对各地的飞机观察者来说都很熟悉。这种类型花了一段时间才赢得飞行员的喜爱,尤其是当 FU24 首次遇到澳大利亚炎热和高海拔条件并遭遇传统的“农业超负荷”时:“它只需要再增加三四百马力,再找一名奥运会举重运动员来驾驶它,”六十年代,一位新西兰人转行成为澳大利亚超级飞行员的飞行员抱怨道。“而且,真正的农业飞行员不信任前轮!” 连续的动力装置变体包括 250、300 和 400 马力的莱康明斯(现在我们取得了一些进展!),最终还有巨大的美国 V-8 卡车发动机,所有这些都充分适应了原始弗莱彻简单而坚固的过度建造结构。一路走来,前轮一直证明自己是正确的,证明它和机身的其他部分一样坚固。但真正的革命是涡轮动力。1967 年,工厂制造的 500 马力 PT6 涡轮螺旋桨发动机首次问世,一年后又推出了两款采用 Garrett 动力的版本,同时,售后市场改装也开始使用 PT6 和 500 马力 Walter M601D 发动机。
我们对创新的关注正在定义航空航天业的未来。伊顿率先使用更轻、更坚固的复合材料,以提高燃油效率和减少排放。伊顿设计的燃油泵、流体动力密封件和碎片监测产品正在推动喷气发动机性能的重大进步。伊顿在燃油惰化技术和惰化系统认证方面的行业领先专业知识正在提高飞机的安全性。
虽然多年来航空一直是 HF 分析和投入的重点,但飞行表演这一特定领域似乎很少受到人为因素的关注。虽然在一定程度上可以将一般 HF 指导应用于这一特定航空领域,但飞行表演有特定的要求和特性,这使得特定的 HF 分析和指导非常有价值。与 FDD 和 DP 的讨论表明,大约 80% - 90% 的飞行表演问题可能涉及人为因素 - 这本身与“主流航空”大致相似。但是,飞行表演的性质可能会增加安全风险,并且对于在英国组织飞行表演的人员 - 飞行表演导演 (FDD) 和参加飞行表演的人员 - 表演飞行员 (DP),更需要对 HF 进行透彻理解和实际应用。
本文描述的飞行员模型的基础是 Hess [5] 提出的结构飞行员模型。介绍了一种利用测量的飞行员频率响应特性来提高所提出的结构飞行员模型准确性的方法。描述了使用 MAI 的飞行员-车辆实验室 (PVL) 工作站进行的具有线性飞机动力学的实验。介绍了结构飞行员模型的修改。介绍了 Matlab/Simulink 环境中飞行员模型参数选择算法的两种方法。将飞行员建模结果与测量的飞行员频率响应进行比较,并介绍和讨论了新得出的操纵品质水平边界。讨论了一种使用通过建模获得的均方误差值来评估操纵品质的方法。最后,简要讨论了改进的结构飞行员在非线性飞机动力学情况下描述人类飞行员行为的能力。