摘要:机器学习方法的最新进展对蛋白质结构预测产生了重大影响,但准确生成和表征蛋白质折叠途径仍然难以实现。在这里,我们展示了如何使用在残基级接触图定义的空间中运行的定向行走策略生成蛋白质折叠轨迹。这种双端策略将蛋白质折叠视为势能表面上连接最小值之间的一系列离散转换。随后对每个转换进行反应路径分析,可以对每条蛋白质折叠路径进行热力学和动力学表征。我们根据由疏水和极性残基构成的一系列模型粗粒度蛋白质的直接分子动力学模拟,验证了我们的离散行走策略生成的蛋白质折叠路径。这种比较表明,基于中间能量屏障对离散路径进行排序为识别物理上合理的折叠集合提供了一种方便的途径。重要的是,通过在蛋白质接触图空间中使用定向行走,我们绕过了与蛋白质折叠研究相关的几个传统挑战,即需要较长的时间尺度和选择特定的顺序参数来驱动折叠过程。因此,我们的方法为研究蛋白质折叠问题提供了一种有用的新途径。■ 简介
在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
在过去的几十年中,层状材料的屈曲不稳定性一直是分析、实验和数值研究的主题。这些系统传统上被认为是无应力表面,而表面压力的影响研究不足。在这项研究中,我们开发了一个双层压缩的有限元模型,发现它在表面压力下的表现不同。我们研究了双层系统在两种压缩模式(外部施加和内部生长产生的)下的屈曲开始、初始波长和后屈曲行为。在各种刚度比(1 < μ f / μ s < 100)中,我们观察到在存在表面压力的情况下稳定性会降低,尤其是在低刚度对比度状态(μ f / μ s < 10)下。我们的结果表明压力边界条件对于双层系统稳定性分析的重要性,尤其是在软物质和生物物质物理学中,例如在脑脊液压力下大脑皮层的折叠,其中压力可能会影响形态发生和屈曲模式。[DOI:10.1115 / 1.4057020]
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
• 地面作战系统 (GCS) PEO 下属的作战恢复系统产品总监 (PD)(2019 年 5 月 - 2022 年 7 月) • PEO CS&CSS 下的 PD 应急基础基础设施(2016 年 6 月 - 2019 年 5 月)。 • 完成高级军事学院奖学金后,领导坦克和汽车研究、开发和工程司令部的自主系统评估和标准开发(2015 年 5 月 - 2016 年 6 月),作为开发任务。 • PEO GCS 下属大型机器人产品经理和机器人系统内的 Applique 下的 Applique 项目官员 - 联合项目办公室(2012 年 6 月 - 2014 年 7 月)。 • PEO CS&CSS 下属陆军水上系统助理项目经理(2010 年 11 月 - 2012 年 6 月)。 • 联合轻型战术车辆项目采购分析师(2009 年 6 月 - 2010
折叠和折纸原理可以从平面paters中实现三维几何形状[1]。由于制造过程通常更有效,甚至一定要在两个维度上完成,因此折叠提供了一种利用这种效率的方法,并具有三维最终结果。平面制造过程与折叠的组合导致了与机器人[2,3],弹簧 - 孔子机制[4],反射和阵列[5,6]和超材料[7,8]一样的潜在应用。兼容的机制通过经历弹性变形而不是传统链接的刚体运动来转移或转化运动,力或能量[9]。各种制造技术可用于各种规模的合规机理,例如电线电气加工(EDM),增材制造,表面微加工,
• 生活技能 o 社交、全球意识、倾听背景 美国宇航局的韦伯望远镜将利用其卓越的角分辨率和近红外仪器来发现和研究与我们相似的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。韦伯太空望远镜将进行曾经被认为不可能的观测;仅仅为了建造它,就必须发明多种新技术。这面开创性的镜子和强大的仪器将发现和研究遥远的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。它还将深入研究过去,追溯最早的恒星和星系诞生的时代。通过扩展我们对宇宙的了解,望远镜将帮助我们回答这些引人注目的问题:“我们是如何来到这里的?”和“我们是孤独的吗?”诺斯罗普·格鲁曼公司致力于确保这一曾经不可想象的成就成为现实。韦伯望远镜被美国国家研究委员会列为天文学和天体物理学的首要任务,是 NASA 和科学界的一项重要项目,也是美国地面和太空天体物理学项目的核心。负责该项目的诺斯罗普·格鲁曼工程师们的任务并不轻松。人们耗费了一亿个小时的时间来建造这架望远镜,它是有史以来最大、最复杂、最强大的太空望远镜。听听工程师们对自己的成就感到自豪——他们正在书写太空探索历史的下一篇章。https://www.youtube.com/watch?v=rErBbFiLbVc 本课将关注三个领域:1)日本宇宙航空研究开发机构 (JAXA) 将折纸原理作为宇航员选拔过程的一部分。候选人必须在为期一周的观察期间折一千只纸鹤。观察员通过这项任务在时间限制内重复性地分析候选人。 2) 了解参与开发韦伯太空望远镜的人员从事的不同工作以及文化多样性。 3) 折纸原理在太空探索中的作用:a) 卫星和深空望远镜(如詹姆斯·韦伯太空望远镜)的许多部件在太空中展开。科学家必须弄清楚如何设计每个部件,使其在发射后正确展开。
3. 只有通过西伯利亚至西欧管道增加天然气出口才能防止苏联硬通货在 80 年代大幅下降。苏联几乎肯定能够按计划通过管道输送天然气,而无需将苏联设备从国内用途转移。足够的设备已经交付或即将交付,使苏联能够满足西欧对天然气的可能需求,直到 80 年代末。到那时,莫斯科可能能够生产足够的现代涡轮机和压缩机,使管道达到满负荷状态,或者将找到新的设备来源,以弥补因美国行动而可能损失的任何设备。履行天然气交付承诺并在涡轮机和压缩机方面实现自给自足将使苏联在效率低下以及资源和努力转移方面付出代价。
FOTEC 为客户提供广泛的测试能力,并凭借其在规划和执行与空间应用和其他技术领域相关的环境测试方面的多年经验为他们提供支持。我们提供组件、系统、仪器和小型航天器(如立方体卫星)的验收和鉴定测试。这有助于我们的客户在开发过程中发现弱点,评估产品的坚固性并提高操作可靠性。结果将根据获得的 ECSS 标准进行收集、验证和解释。这保证了标准化和可重复的测试活动。