葱代表着印度尼西亚家庭需求的关键商品;但是,他们的产量未能满足不断升级的需求。因此,提高生产的技术干预措施必须进行,其中一个有希望的机会是应用光合细菌(PSB)。可以通过直接的土壤输注或叶面喷涂来应用PSB。本研究旨在阐明各种PSB应用技术对局部Bantul葱品种的生长和产量的差异影响。从2022年9月至1222年12月进行。该研究采用完整的随机块设计(RCBD),并结合了一个施肥因子和四个层次:缺乏肥料,NPK肥料16:16:16 + psb通过浇注,NPK肥料,NPK肥料16:16:16:16:16:16:16:16 + PSB通过喷雾和NPK肥料16:16:16:16:16:16。每种治疗都进行了十种复制。在数据采集之后,采用了方差分析,然后以5%的错误率进行了诚实的显着差异测试(HSD Tukey)。结果表明,PSB的提供导致了根长度,叶绿素含量,硝酸盐还原酶活性,根和芽的新鲜和干重,每个团块的鳞茎计数,每个团块的新鲜和干重灯泡以及整体生产力。最佳的PSB应用技术被确定为涌入增长的媒体,导致葱生产率的31.28%提高了31.28%。
糖是土壤中碳水化合物的主要来源,也是微生物的必需有机化合物。它们可能刺激骨料形成,并充当根部区域中各种过程的触发,例如n循环和土壤有机物的分解。生物学生物学的应用可以在潮水中或作为种子涂层应用,被注入土壤中,作为干肥涂层或叶面喷雾剂。最常见的应用方法是繁殖和种子处理,因为这些方法可确保直接递送生物学。方法选择将取决于产品及其应用的目的。对于某些产品,将生物学与肥料或除草剂相结合会损害生物学。因此,农民应在考虑生物学与其他产品的兼容性的同时特别注意。生物学的处理和存储很重要的是阅读标签,特别是如果生物含有活生物体。正确的存储,处理和应用至关重要。对于所有生物学,建议将产品存储在合适的位置(凉爽,干燥和深色)以保持保质期。应避免与无化学水混合时形成均匀的溶液,并应避免混合后过度的停机时间。除了不使用规定的应用方法外,不正确的储存和无效混合也会影响生物学的功效。实验生物学的任何生物学的有效性可能会因位置而异。本地研究可以帮助评估哪些产品的工作原理,什么不是给定情况。
生物学系鲍德因学院不伦瑞克,缅因州04011电话:(207)725-3944电子邮件:blogan@bowdoin.edu教育1997 Ph.D.职位2021年至今的塞缪尔·S·布彻(Samuel S.植物与环境中心研究员,澳大利亚西悉尼大学,2010 - 2011年鲍德因学院生物化学计划主任[也是2006-2009] 2010年,2010年,新西兰维多利亚大学惠灵顿维多利亚大学生物科学学院,2004-2010 2004-2010副教授,鲍德因学院1998-2004助理科学助理,鲍德大学,鲍德大学,博士后研究员)。叶面异戊二烯生产的生物化学和生理学。(顾问:罗素·蒙森教授)科罗拉多大学1997年E.P.O.生物学,科罗拉多大学 - 植物生理学1997专业研究助理。将Monstera Deliciosa适应高光。(顾问:威廉·W·亚当斯三世教授和芭芭拉·德米米格·亚当斯教授)科罗拉多大学授予的联邦/卫生部惠氏美国艺术基金会授予“蒙海根野生世界:艺术家,生态学家和
玉米氮 - 生物试验(现场尺度)目的:玉米对不同氮率的反应,并比较对Envita和源生物学处理的产量反应。接触:Dan Quinn Sulphur Source X Cerea Rye覆盖作物(田间尺度)目的:将大豆的反应与谷物黑麦覆盖物中不同硫的不同来源进行比较,而不是覆盖作物。接触:Shaun Casteel玉米对杂种类型和下力设置(BECHMAN)的反应:研究试验检查2种玉米杂种,以响应可变的静态和主动降低力设置,以评估出现,最终的植物支架和产量。接触:Dan Quinn玉米对植物前P和K肥料(马赛克)目的的反应:研究试验检查玉米养分的吸收和对各种预纯施用的P和K干燥肥料组合的产生反应。接触:Dan Quinn玉米对种子取向比和定向原型种植的反应(John Deere)目的:玉米对种子取向比率的反应,以及对旨在将种子定向在行中相同方向方向定向的新原型种植者单元的评估。治疗与当前的商业最大排行行进行了比较。联系人:Dan Quinn玉米对Xyway LFR应用程序的反应(FMC)目的:研究试验,检查了杀菌剂Xyway LFR(FlutriaFol)的不同位置和季节的时间。研究检查了玉米叶叶,组织flutriafol的浓度以及对在植物和侧s上应用的Xyway LFR的响应。联系人:Dan Quinn
由真菌双菌蛋黄酱引起的抽象棕色点疾病是水稻植物中常见的叶面苦难,影响了全球的农业产量。进行了一次实地实验,以确定2018年6月至11月在Chitwan的Rampur的抗棕色斑点。一组54种由52个陆地和两次检查(耐药性和易感性)组成的水稻基因型在Alpha晶格设计中对疾病的抗性进行了评估。疾病进度曲线(AUDPC)值之间的区域之间的值在基因型之间存在显着变化。在测试的54种基因型中,发现9种基因型中度抗性,38个基因型易感性,并发现7种基因型高度易感。在霍德巴希种子中发现了最大病原体的最大病原体(64.9%),其次是桑卡里卡(Sankharika)(64.15%)。在检查sabitri(4.05%)中发现病原体的最小平均发生率,与其他28种基因型相同。在基因型中,归因性特征的产量非常重要。从Ghusara(1.51 t ha -1)获得最高的谷物产量(1.55 t ha -1),然后是lalbachhi。最低的晶粒产量是从Ghuyeni Saro(0.21 T ha -1)获得的,其次是Jaguli Mansuli(0.25 T HA -1)。所有产量和归因性字符都与AUDPC负相关。收获后种子传播感染在基因型中非常重要。结果表明,在筛选的基因型中,大多数水稻层次都容易受到棕色斑点的影响。关键字:AUDPC,种子疾病,水稻基因型,抗性基因型
源对碳(C)分配是由水槽强度驱动的,即水槽器官进口C的能力,在组织生长和生物量生产率中起着核心作用。但是,在树木中尚未彻底表征水槽强度的分子驱动因素。生长素作为主要的植物植物激素,可调节源组织中光剂量的动员,并提高碳水化合物向水槽器官(包括根)的易位。在这项研究中,我们使用了“生长素刺激的碳汇”方法来了解杨树中长距离源 - 键C分配中涉及的分子过程。杨树碎屑被叶面喷涂,上面喷涂了极地生长素传输调节剂,包括生长素增强剂(AE)(即IBA和IAA)和生长素抑制剂(AI)(即NPA),然后全面使用生物量评估,均经材料来对叶片,茎和根组织进行全面的分析,均质和均质概况,均经均经材料,c isotope and coptope and coptope and coptoper nertem nertops和coptoper nertops nekotom and et necotom nerting nekoling,et negoling noursem。生长素调节剂改变了根部干重和分支模式,AE增加了光合固定的C从叶片到根组织。转录组分析在AE条件下确定了根组织中高度表达的基因,其中包括编码多半乳糖醛酸酶和β-淀粉酶的转录本,这些转录物可能会增加水槽的大小和活性。代谢分析表明,总代谢的变化,包括甲醇的相对丰度含量改变,在AE和AI条件下,根组织中柠檬酸盐水平的相反趋势。总而言之,我们假设一个模型表明,流动糖醇,淀粉代谢衍生的糖和TCA-Cycle中间体可以作为杨树中的源– sink C关系,作为水槽强度的关键分子驱动因素。
摘要。白粉病(Blumeria graminis f. sp. Tritici,(Bgt))是一种世界范围内重要的小麦(Triticum aestivum)真菌叶面病害,造成严重的产量损失。因此,开发抗性基因和解剖抗性机制将有利于小麦育种。Bgt 抗性基因 PmAS846 被转移到来自 Triticum dicoccoides 的六倍体小麦品系 N9134 中,它仍然是最有效的抗性基因之一。在这里,通过 RNA 测序,我们与模拟感染植物相比,在小麦 -Bgt 相互作用中使用成对比较和加权基因共表达网络分析鉴定了三个共表达的基因模块。应激特异性模块的中心基因显著富集在剪接体、吞噬体、mRNA 监视途径、内质网中的蛋白质加工和内吞作用中。选取位于5BL染色体上的诱导模块基因构建蛋白质相互作用网络,预测其中关键的枢纽节点蛋白包括Hsp70、DEAD/DEAH盒RNA解旋酶PRH75、延长因子EF-2、细胞分裂周期5、ARF鸟嘌呤核苷酸交换因子GNOM-like、蛋白磷酸酶2C 70蛋白,并与RLP37、RPP13、RPS2类似物等多个抗病蛋白发生相互作用。基因本体富集结果表明,小麦在Bgt胁迫下可以通过mRNA转录机制激活结合功能基因。其中,GNOM-like、PP2C isoform X1和跨膜9超家族成员9被定位到距离为4.8 Mb的PmAS846基因片段上。该研究为深入理解抗病机制及克隆抗病基因PmAS846奠定了基础。
摘要 沙雷氏菌属是肠杆菌科的一种菌种,存在于多种生态环境中。近年来,沙雷氏菌已成为促进植物生长和防御植物病虫害的多方面贡献者。本综述探讨了沙雷氏菌诱导植物生长和缓解非生物和生物胁迫的机制。沙雷氏菌与植物生态系统的无缝整合使沙雷氏菌能够产生群体感应分子 N-酰基高丝氨酸内酯 (AHL),促进植物组织的定植并利用植物分泌物中的营养。这种错综复杂的通讯网络使沙雷氏菌能够产生植物激素并分解土壤中的必需营养物质供植物吸收。面对生态竞争对手,许多沙雷氏菌菌株表现出非凡的适应性,产生多种水解酶和抗菌、抗真菌或杀虫化合物,有效控制有害细菌、真菌和害虫。此外,有益的沙雷氏菌菌株还分别使用诱导系统抗性 (ISR) 和耐受性 (IST) 来缓解生物和非生物胁迫。沙雷氏菌的各种农业应用包括直接使用细菌细胞进行种子包衣、叶面喷洒和土壤接种,或将其生物活性化合物单独或与其他材料结合应用于植物的各个部位。这些努力旨在增强植物健康、抑制疾病和控制害虫种群。尽管应用前景广阔,但有报道称植物和动物具有机会性致病性。因此,应考虑几种安全方法和使用毒力因子突变菌株。沙雷氏菌在农业中的应用趋势预计将持续下去。
抽象斑点斑点(SB)是一种普遍的大麦叶子疾病,是由半野生真菌病原体索罗基尼亚人引起的。主要发生在全球潮湿的生长区域中,SB可能导致高达30%的收益率损失。遗传抗性仍然是疾病管理的最有效策略;然而,尽管先前鉴定出主要的抗性基因座,但大多数澳大利亚大麦品种都表现出敏感性。这项研究调查了澳大利亚大麦育种计划中的遗传结构潜在的斑点斑点抗性。连续两年使用单个分生孢子(SB61)在幼苗和成人生长阶段进行了抗药性。总共将337条大麦线与16,824个多态性飞镖seq™标记物一起键入。采用了两种映射方法:全基因组关联研究(GWAS)和基于单倍型的局部基因组估计值(局部GEBV)方法。两种方法都鉴定出在3H和7H铬的两个主要抗性相关区域,在跨生长阶段有效。此外,基于单倍型的局部GEBV方法揭示了GWAS未检测到的1H,3H和6H的抗性相关区域。单倍型堆叠分析强调了7H区域与其他抗药性单倍型相结合时,7H区域对成人植物抗性的批评作用,表明by-Gene的相互作用显着,并突出了斑点斑点耐药性的复杂,定量性质。这项研究证实了澳大利亚大麦繁殖种群中关键阻力基因座的存在,为斑点抗性抗性的遗传结构提供了新的见解,并强调了通过单倍型堆叠和全基因组预测方法增强抵抗力的潜力。
摘要:使用大量合成化肥是现代农业的一般实践,其经济和环境成本很高。Biostimulans由于能够刺激植物生理过程而无需污染土壤和水而刺激植物生理过程,因此已成为这种常规的替代方法。然而,在厄瓜多尔,几乎没有研究生物刺激物对农作物感兴趣的作物产量的影响。这项研究的目的是确定基于牛粪生物刺激剂基于牛肥料的影响(VCLB)对生理变量的浸润(VCLB)在野外条件下以及在野外条件下的玉米,棉花和花生的产量以及在半耕种的培养下,在野外培养的培养下,在较高的耕种中,Manabirince coad coad coad coad coad coad coad coad coad conabiince of Manabiince conabiince conabiince of Manabdime。使用该物种和杂种进行的九项实验包括VCLB的各种稀释液以及由氮,磷和钾的受精组成的对照,具体取决于物种,而没有肥料。在所有物种中,VCLB诱导的植物长度,叶绿素含量和作物产量均表现出相等或更高的统计差异,而统计差异(NPK)。这些结果证明了这种生物刺激剂作为生产这些农作物的可持续替代品的潜力,从而在厄瓜多尔Manabí的热带条件下减少了生产对环境的不利影响。我们建议通过生产规模的研究来证实这些结果。关键词:气候变化,环境,受精,植物生理,植物生产,可持续农业。摘要:使用大量合成化肥是现代农业的一般实践,经济和环境成本很高。 div>基于天然物质的生物刺激剂已成为这种例程的替代品,因为它可以刺激蔬菜生理过程而不污染土壤和水。 div>但是,在厄瓜多尔,很少有关于生物刺激物对农业利益产量的影响的研究。 div>这项研究的目的是确定基于牛粪(VCLB)的渗出物对生理变量的渗滤液的叶面应用的影响,以及在野外条件下,棉花和花生在玉米和花生中的表现,chard和五个胡椒杂种在半培养的条件下,crandative cultentative corpartic corperations ecurab ecuard ecuard ecuard corplim corplimab corplimab corplimab corplimab castim corplimab。 div>根据该物种和杂种进行的九种实验包括各种VCLB稀释液和对照组,包括根据该物种的氮肥,磷和钾组成,以及没有肥料的土壤。 div>在所有物种中,VCLB诱导的植物长度,叶绿素含量和统计学含量或高于用NPK进行化学施肥的植物含量或更高。 div>这些结果证明了这种生物刺激的潜力,是这些作物生产的可持续替代方法,这将减少厄瓜多尔Manabí的热带条件下对环境的影响。 div>建议通过生产规模研究来证实这些结果。 div>关键词:可持续农业,施肥,植物生理学,环境,植物生产,气候变化。 div>