自2016年LNG出口禁令自2016年解除以来,美国的抽象液化天然气(LNG)出口急剧上升,而美国现在是世界上最大的出口商。此LNG主要由页岩气产生。生产页岩气以及使油轮运输的液化天然气和液化天然气运输的液化是能源密集型的,这对LNG温室气体足迹产生了重大贡献。页岩气的生产和运输也发出了大量甲烷,液化天然气的液化和油轮运输可以进一步增加甲烷排放。因此,液化天然气的最终用途燃烧中的二氧化碳(CO 2)仅占LNG Greenhouse气体足迹的34%,当时在排放后20年中比较了CO 2和甲烷(GWP 20)(GWP 20)。上游和中游甲烷排放是LNG足迹的最大贡献者(基于GWP 20的总LNG排放量的38%)。添加用于生产LNG的能量的CO 2排放,上游和中游排放量平均占LNG总温室气体足迹的47%。其他重要的排放是液化过程(平均使用GWP 20的总计8.8%)和油轮运输(使用GWP 20平均占总数的5.5%)。油轮的排放量从3.9%到8.1%,具体取决于油轮类型。令人惊讶的是,尽管甲烷在排气口中的甲烷滑倒,但最现代的油轮与蒸汽动力油轮相比,由2冲程和4冲程发动机推动的总温室气体排放量高于蒸汽动力的油轮。总体而言,使用GWP 20分析(160 g CO 2 -eqivArt/mj vs 120 g CO 2 -eqivalent/mj),液化天然气作为燃料源的温室气体足迹比煤炭大33%。甚至在排放后的100年(GWP 100)的时间范围内考虑,这严重低估了甲烷的气候损害,LNG足迹等于或超过煤炭。
Volume data---------------------------------------------------------------------------15 Emission factor methodologies and resolution------------------------------- 15 6.1.2.1 Emission factors for dairy ingredients----------------------------------- 16 6.1.2.2 Emission factors for beet and cane sugar------------------------------ 17 6.1.2.3 Emission factors for oils and fats----------------------------------------- 18 6.1.2.4 Emission factors for emulsifiers------------------------------------------ 19 6.1.2.5 Emission factors for other ingredients---------------------------------- 19 6.1.3 Packaging--------------------------------------------------------------------------- 20 6.1.4 Services------------------------------------------------------------------------------ 20 6.2 Category 3.2: Capital goods----------------------------------------------------------- 20 6.3 Category 3.3: Fuel and energy-related activities----------------------------------20 6.4 Category 3.4: Upstream transportation and distribution----------------------- 21 6.5 Category 3.5: Waste generated in operations-------------------------------------- 21 6.6 Category 3.6: Business travel---------------------------------------------------------- 22 6.7 Category 3.7: Employee commuting------------------------------------------------ 22 6.8 Category 3.10: Processing of sold products---------------------------------------- 23 6.9 Category 3.12: End-of-life treatment of sold products--------------------------- 23参考书目-------------------------------------------------------------------------------------------------------------------- 24
©2024 Pure Storage、Pure Storage P 徽标、Evergreen、FlashArray、FlashBlade、Pure1 以及 Pure Storage 商标列表中的商标是 Pure Storage Inc. 在美国和/或其他国家/地区的商标或注册商标。商标列表可在 purestorage.com/trademarks 找到。其他名称可能是其各自所有者的商标。
由于在聚对邻苯二甲酸酯膜的印刷过程中使用了溶剂,因此与此过程相关的存在很大的环境风险。溶剂大大增加了制造工艺的碳足迹。该摘要解释了一种综合策略,以减少宠物电影制作中溶剂的排放,以应对行业对可持续实践的紧急需求。每个单元中用于计算和将碳排放转换为直接排放的能量被称为“溶剂用法”计算;电碳发射因子用于计算间接排放。每天排放因子:12公斤;每天直接使用溶剂:52.08公斤。 可以使用碳足迹作为对各个部门进行比较的一种手段,因为可以使用各种方法和系统限制。 在打印宠物膜期间消耗的溶剂是因为VOC化合物会影响具有高排放因子的环境。 计算每种颜色的挥发性有机化合物并将其转换为直接碳排放。 整体温室气体(主要是二氧化碳和其他污染物)被称为碳足迹。 电碳排放系数和2400 kg/kW的单位使用用于确定间接碳排放。 碳足迹计算将有助于行业朝着更可持续和友好的环境和绿色地球迈进。每天排放因子:12公斤;每天直接使用溶剂:52.08公斤。可以使用碳足迹作为对各个部门进行比较的一种手段,因为可以使用各种方法和系统限制。在打印宠物膜期间消耗的溶剂是因为VOC化合物会影响具有高排放因子的环境。计算每种颜色的挥发性有机化合物并将其转换为直接碳排放。整体温室气体(主要是二氧化碳和其他污染物)被称为碳足迹。电碳排放系数和2400 kg/kW的单位使用用于确定间接碳排放。碳足迹计算将有助于行业朝着更可持续和友好的环境和绿色地球迈进。
据我们所知,这项研究是估计净碳足迹的州影响的首次尝试,重点是生活方式,工业结构和移民结构的差异(即,每个国家来自美国州的哪些移民来自哪些地区)。我们发现,美国的移民在2017年35个州的碳足迹净变化增加,总体上升约为15 mt-CO2。助长了净碳足迹的增加最多(+2,375 kt-CO2),其次是佛罗里达州(+2,235 kt-co2)。这种增加的影响占碳足迹总增加的27%。
在最近的一份报告中,JRC描述了一种提供这种透明度的方法学方法:在“ -1/+1”方法中,基于生物的产品的碳足迹通过从大气中撤回的CO 2的数量降低,并将其作为碳掺入Bio-Mass衍生材料中。这种评估方法通过计算大气碳的掺入来为降低生物基产品的PCF提供透明度,而在该阶段1中,生命末期的排放反映了。但是,我们了解委员会考虑的碳建模选项之一是在“前景级别”上对“ -1/+1方法”的使用有限,同时在“背景级别”应用“ 0/0方法”,其中在生命周期的任何阶段没有学分或好处。
Guarning UK是英国的领先安全和保护管理公司。管理2,000多个网站,Guarding UK为商业,公司和住宅物业提供全面的安全服务,保护价值约400亿英镑的资产。安全服务包括快速响应,安全技术解决方案,安全人员服务和闭路电视(CCTV)监视。该公司总共雇用了600名人员,使用了15辆公司的车队,并在3座办公楼中运营。
•大气动力学,对流为5个示踪剂•辐射(“ ecrad”)•云覆盖•湍流•饱和调节•graupel Microphysics•大气从初始状态旋转•1天模拟;各种分辨率,合奏填充1个机柜
摘要:金属耐火油漆,称为MFR,从而代表具有双重功能作为耐火解决方案的尖端绝缘材料,在施工应用领域具有很大的优势。该博览会从出版物中记录的学术贡献中得出了其主要见解。这些研究的焦点包括评估建筑结构中与聚乙烯材料相关的火灾危害,以及在隧道中高温环境中迫击炮的增强。本研究的目的是评估基于软木塞的涂层(MFR)与传统涂层相比在施工应用中的腐蚀,耐火性和热绝缘性能方面的有效性。该评估的重点是通过检查关键特性,例如粘附,防火保护所需的厚度,减少导热率和耐腐蚀性来量化MFR的功效。MFR在建筑物和隧道的防火中非常有效,在维持结构完整性的同时,具有超过1000℃的温度。MFR的一个独特方面是使用软木剃须,这通常是葡萄酒瓶 - 斯塔珀生产中未充分利用的副产品。这种创新性不仅放大了MFR的耐火属性,而且还将可持续性和明智的资源利用引入其制造过程中。