北方邦的ICAR-Indian草原和饲料研究所(IGFRI)Jhansi是亚洲的杰出机构,致力于对年度和多年生草原和多年生草原和饲料作物的基本,战略,应用和适应性研究。已有六十多年的历史,IGFRI在开发用于草原增强和饲料生产的量身定制技术方面取得了显着进步,旨在为农业社区提供绿色和可持续的饲料解决方案。该研究所的成功植根于其多学科方法,该方法将土壤,植物和动物研究整合在一起,以解决日益增长的牲畜种群和减少草地地区的绿色和干饲料的严重短缺。igfri通过七个专业部门运作,包括作物改善,农作物生产,草地和西尔维帕斯特尔管理,农场机械和收获后技术,种子技术,植物性动物关系和社会科学。这项工作得到了不同农业气候区域的三个区域站的支持。在报告年度,在NGM Rabi 2023-24会议期间,卢克纳品种IGFR-DL-2(AWCL-2)在西北地区被释放在西北地区。这种品种每公顷产量为85-90吨绿色饲料,每公顷10-15吨干物质,每公顷2.5-3.0吨粗蛋白产量(CPY)和0.1-0.15吨种子每公顷。它具有16-18%的粗蛋白含量。此外,第41个州种子子委员会(SSSC)确定了在卡纳塔克邦州第8和3区释放的Lucerne品种IGFR-DL-5(IGFRI-DHARWAD LUCERNE-5)。这种品种每公顷产生90-110吨的绿色饲料,每公顷15-20吨干物质,粗蛋白含量为15-20%。该研究所在中期存储(MTS)模块中维持了大约10,980个饲料的饲料量。为加强饲料种子链并确保最终用户的优质种子的可用性,该研究所提供了18.34吨各种饲料作物的育种种子,以进一步繁殖,并将7.52吨的TFL种子直接向农业界。此外,向杂种利益相关者提供了100万个植根于多年生草的植物。为了定期和增加优质饲料种子的供应,研究所在与Agrinnovate涉及的行业批准某些品种方面做出了共同的努力。为了确保每个印度国家成为饲料盈余,IGFRI与27个州的畜牧部门组织了研讨会,并成功地为这些州制定了特定国家特定的“饲料计划”。高评级期刊的出版物已成为该研究所的常规特征和标志,在当年> 70篇研究文章> 6 naAS评级期刊。
农场经理 1989 农业工程学硕士 1990 德国霍恩海姆大学 植物育种与生物技术 农业理学博士 1994 美国佛罗里达大学 作物生物技术博士后 1994-1997 B. 任职 2012-至今 佛罗里达大学农学系教授 2008-2012 佛罗里达大学农学系副教授 2001-2008 佛罗里达大学农学系助理教授 1997-2001 IPK Gatersleben 植物基因组研究中心研究组长 1994-1997 博士后研究助理 佛罗里达大学园艺系 1991-1994 研究生研究助理 植物育种系 霍恩海姆大学转基因作物的风险管理。 D. 奖项和荣誉 艾哈迈达巴德大学 Rasila 和 Chandrakant Kadia 捐赠客座教授,2023 年 美国作物科学学会研究员,2021 年 体外生物学学会杰出科学家奖,2020 年 体外生物学学会研究员,2018 年 UF 杰出研究项目研究基金会教授职位,2013 年和 2018 年 UF 杰出学术项目任期教授职位,2018 年 UF-IFAS 高影响力出版物奖,2014 年和 2018 年 Gamma Sigma Delta 高级教师功绩奖,2016 年 体外生物学学会杰出服务奖,2012 年 Gamma Sigma Delta 初级教师功绩奖,2009 年 E. 专业服务和编辑委员会主席 美国作物科学学会 C7 分部 2020 年筹款人和研讨会组织者 美国作物科学学会 C7 分部 2018 2020 《基因编辑前沿》副主编 2022-至今 《科学报告》副主编 2019-至今 《作物科学》副主编 2004 – 2009 《植物基因组》副主编 2017-2020 《植物细胞组织和器官培养:植物生物技术杂志》副主编 2008 – 2020 《植物育种》主题编辑 2008 – 2019 体外生物学学会 (SIVB) 董事会成员 2011 – 2012;2014 – 2019 SIVB 会议程序主席 2011 – 2012; 2018 – 2019 第二届植物合成生物学国际会议主席 2018 国际牧草及草皮育种会议程序委员会成员 2018 – 2019 SIVB 植物生物学分会主席 2010 – 2012 SIVB 植物生物技术程序委员会主席 2008 – 2009 SIVB 筹款人兼植物生物技术程序委员会联合主席 2007 – 2008
摘要。这项研究的目的是通过估计农民在采用有机农业实践和生态习惯时估算农民的反应,对2020年后共同农业政策(CAP)中所采取的农业环境措施的潜在影响进行实质性评估。这项研究是通过基于积极的数学编程(PMP)的基于代理的模型(ABM)进行的。ABM促进了农民之间的相互作用的模拟,从而可以分析农场异质元素。PMP方法论为农民的经济驱动力增加了非理性的尺寸。使用2019年农场会计数据网络(FADN)数据对该模型进行校准,该数据针对意大利的Emilia Romagna地区。我们的发现揭示了对土地使用的重大影响,谷物栽培的谷物培养有利,有利于蛋白质和饲料作物。此外,观察到结构性转移,特别是小型农场数量的减少。我们还评估了环境和经济的影响,观察到CO 2相当于每公顷的排放量,供水需求的增加以及农场之间的整体经济稳定,如每公顷毛利率的变化所表明。
在GWP方面,我们观察到,高输入牛奶生产系统发射1.18±0.24 kg CO2-EQ/kg FPCM,而低输入方案则发射1.78±0.41 kg CO2-EQ/kg FPCM。在低输入情况下,有机高输入和低输入喂养方案之间观察到的GWP差异的主要原因是肠发酵,肥料管理和饲料生产的较高份额。饲料的这种转变朝着基于草原的低输入场景,浓缩物减少会导致饲料混合物具有较低的消化率,能量和蛋白质含量。另一方面,通过减少玉米青贮饲料并浓缩低输入饲料混合物对人类食品的竞争力较低,尽管目前的LCA分析并未捕获这种情况。饲料生产仍然是两个生产系统中GWP的重要贡献。在Gladbacherhof,由于气候条件,放牧的一半受到限制,从而影响草地的数量和营养质量(较低的总干物质和营养含量)。当减少饮食中的浓缩物时,所有草料的质量变得至关重要,因为高质量的草料可以提高牛奶产量并减少每个FPCM的环境影响。
田纳西州的大多数牧场和干草地都种植高羊茅、果园草或猫尾草。这些是冷季多年生草本植物,这意味着它们在春季和秋季生长,但在夏季产量较低或处于休眠状态。由于它们是多年生草本植物,因此它们每年都会从树冠中长出,而不是通过种子发芽。这些草成为田纳西州大多数牧草计划的基础的主要原因是它们的生长季节长(图 1)。高羊茅和果园草是用于牧场和干草的主要草本植物,尽管一些生产商单独使用猫尾草或将其与其他两种草混合使用。这三种草种都可以在田纳西州成功使用。这些草之间的差异使得选择使用哪种草取决于用途(放牧还是干草)以及您的农场位于该州的哪个位置。田纳西州可以种植其他几种冷季多年生草本植物。可以使用肯塔基蓝草和马图阿草等草类,但由于夏季高温和干旱,这些草类的生长寿命通常会缩短。由于这些植物的生长寿命较短,因此通常不建议在田纳西州用作干草或牧场。
西伯利亚野黑麦 (Elymus sibiricus L.) 是一种异源四倍体物种,是一种原产于温带地区的潜在优质多年生牧草作物。我们利用代表 10 个重复序列的荧光结合寡核苷酸,包括 6 个微卫星重复序列、2 个卫星重复序列和 2 个核糖体 DNA,通过连续荧光原位杂交和基因组原位杂交分析来表征 E . sibiricus 染色体。我们的结果表明,微卫星重复序列 ( AAG ) 10 或 ( AGG ) 10 、卫星重复序列 pAs1 和 pSc119.2 以及核糖体 5S rDNA 和 45S rDNA 是唯一染色体的特异性标记。通过进一步的多态性筛选,在不同 E .西伯利亚小麦品种的基因组多态性分析采用 (AAG) 10、Oligo-pAs1 和 Oligo-pSc119.2 探针混合物。不同基因组和不同个体染色体之间的染色体多态性各不相同。特别是在种群内和种群间鉴定出 H 基因组中两种不同形式的 E 染色体。本文讨论了这些结果对西伯利亚小麦基因组研究和育种的意义,以及改进基于荧光原位杂交的核型分析的新方法。
相对较少的研究研究了除草剂对传粉媒介的直接影响,因此不幸的是,我们不知道大多数除草剂可能对传粉媒介物种产生的影响。但是,研究发现一些常见的除草剂会造成伤害。特别是,通常使用的除草剂草甘膦和包含它的产品已被发现:•干扰蜜蜂的导航能力(Balbuena等人2015)并学习与食物来源相关的信号(MengoniGoñalons和Farina,2018年)。 这可能会影响蜜蜂有效觅食的能力。 •更改蜜蜂的肠道微生物组(Motta等人 2018,Dai等。 2018,Blot等。 2019),这可能会增加对有害疾病的敏感性。 •巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。 Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。 可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。2015)并学习与食物来源相关的信号(MengoniGoñalons和Farina,2018年)。这可能会影响蜜蜂有效觅食的能力。•更改蜜蜂的肠道微生物组(Motta等人2018,Dai等。 2018,Blot等。 2019),这可能会增加对有害疾病的敏感性。 •巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。 Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。 可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。2018,Dai等。2018,Blot等。 2019),这可能会增加对有害疾病的敏感性。 •巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。 Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。 可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。2018,Blot等。2019),这可能会增加对有害疾病的敏感性。•巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。
这项创新是一个捆绑包,包括改善的牲畜品种和改进的喂养。常见的饲料干预措施包括改良的草和豆类(例如,高产的热带草,如蓬型或五脑含量物种以及诸如山damodium的高质量豆类物种),多肉种,可以提供高度消化的且高蛋白质的鸡蛋和高蛋白的livestock饲料和增加作物和营养价值的物质和营养价值。其他饲料干预措施包括保存新鲜饲料,填补季节性差距以及加入高质量的补充剂。小农户之间的饲料改善干预措施包括引入改良的草和豆类,使用多功能树,增加摄入量的方法以及通过物理或化学处理的农作物残留物的营养价值,以及将新鲜饲料保存以填充季节性进给料的方法。虽然纯粹的外来品种具有较高的屈服潜力,但小农通常缺乏足够的养活动物的能力。此外,外来品种往往更容易受到疾病的影响。交叉品种更为首选。这种创新束越来越多地促进了食品系统转化。将饲料和草料改善与改善动物健康和遗传学的整合有可能大幅提高牲畜的产量 -
13。虽然细菌是众多瘤胃微生物,但原生动物占瘤胃中最多的空间(高达50%)。瘤胃原生动物由于培养它们所带来的挑战,并且由于它们的复杂遗传结构使基因组研究变得困难,因此仍然对其进行了研究。由于后一个问题,只有一个瘤胃原生动物(尾apidium caudatum)对其基因组进行了测序。瘤胃原生动物的功能仍然存在争议。其中一些是纤维化的,而另一些则使用“简单”的碳水化合物。这些过程有助于觅食分解并提高宿主动物营养的可用性。但是,原生动物也与甲烷发生有关。甲烷的排放量已经被发现被拆除的动物(已通过化学方法去除原生动物)低于尚未被拆除的动物的动物。defaunated动物的平均每日体重或牛奶产量的平均生产力也更高。然而,瘤胃原生动物在其对植物降解和甲烷产生的贡献方面有很大差异,因此总脱殖可能不是最佳策略。但是,从瘤胃中选择性地去除特定类型的原生动物仍然具有挑战性。
集成系统允许由于插入不同种类的树木和灌木而重新设计生产景观。多样化的牧场比在谷物上喂养的动物为动物提供了更大的范围和更多的植物营养素,除此之外,树豆类具有产生具有极好水平的粗蛋白的生物量的巨大潜力,以及共生氮固定的能力。假设建模可以成为解决系统性变化的相关工具,我们试图回答以下问题:“考虑牧场和作物生产的结合,如何对反刍动物的饲养系统进行建模?”因此,这项工作旨在创建一个建模框架,以指导在农场层面在热带条件下反刍动物的生产景观的重新设计。将要进行的活动将分为四个阶段:a)关于反刍动物耕作的现有指标和/或模型的书目研究; b)撰写意见文章(已经发表)和审查文章(本文); c)指示使用多功能草料工厂使用多功能生产景观重新设计的参数; d)通过为农村财产建立决策模型来展示新颖性。这项工作的假设是,可以通过从已经存在和/或正在构造的实验变量以及已发表的文献中获得多功能生产景观的重新设计。