我们引入了一种稳定器形式,用于称为算子代数量子纠错 (OAQEC) 的通用量子纠错框架,它概括了 Gottesman 对传统量子纠错码 (QEC) 的公式和 Poulin 对算子量子纠错和子系统代码 (OQEC) 的公式。该构造生成混合经典量子稳定器代码,我们制定了一个定理,该定理完全描述了给定代码可纠正的 Pauli 错误,概括了 QEC 和 OQEC 稳定器形式的基本定理。我们发现了受形式主义启发的 Bacon-Shor 子系统代码的混合版本,并应用该定理得出了给出此类代码距离的结果。我们展示了一些最近的混合子空间代码构造如何被形式主义捕获,我们还指出了它如何扩展到量子比特。
- 我从事的工作:验证关键软件 - 这意味着什么:以数学确定性显示代码是“做正确的事” - 我在哪里工作:美国的Microsoft Azure Research,美国(以前:巴黎,巴黎) - 有趣的事实:我在2008 - 2009年在NUS上学习了NUS,在2008-2009-2008-2009(有一个很棒的时代)
在安全 - 关键设置中运行的动态系统的控制器必须解释随机干扰。这种干扰通常被建模为动态系统中的过程噪声,并且常见的假设是潜在的分布是已知和/或高斯。但是,在实践中,这些假设可能是不现实的,并且可能导致真实噪声分布的近似值差。我们提出了一种新型控制器合成方法,该方法不依赖于噪声分布的任何明确表示。特别是,我们解决了计算一个控制器的问题,该控制器可在安全达到目标时提供概率保证,同时避免了状态空间的不安全区域。首先,我们将连续控制系统抽象为有限状态模型,该模型通过离散状态之间的概率过渡捕获噪声。作为关键贡献,我们根据有限数量的噪声样本来调整方案方法的工具,以计算这些过渡概率的近似正确(PAC)。我们在所谓的间隔马尔可夫决策过程(IMDP)的过渡概率间隔中捕获了这些界限。此IMDP具有用户指定的置信度概率,可抵抗过渡概率的不确定性,并且可以通过样本数量来控制概率间隔的紧密度。我们使用最先进的验证技术在IMDP上提供保证,并计算一个保证将这些保证置于原始控制系统的控制器。此外,我们开发了一种量身定制的计算方案,该方案降低了IMDP上这些保证的合成的复杂性。现实控制系统上的基准测试显示了我们方法的实际适用性,即使IMDP具有数亿个过渡。
方法:就本研究而言,来自肺,肝,结肠和肾脏的人FFPE活检组织是从单个中心的生物座席中获得的。基因喷气基因组DNA纯化试剂盒(目录#K0722)从Thermo Fisher Scientific和Recocousal kecouseall总核酸分离试剂盒中获得了从生活技术中获得的总核酸分离试剂盒,并分别用于提取DNA和RNA。简要地,修改涉及扩展试剂孵育时间,增加样品体积和洗涤步骤,并增加最终核酸的恢复和浓度步骤。将每个组织样品的8-10μm厚约8-10μm,并用于提取。使用纳米体分光光度计验证了获得的核酸的纯度。
立即发布萨凡纳河现场供应链主持了50多个合作伙伴的员工增强峰会 - (2023年11月29日,2023年11月29日) - 萨凡纳河核解决方案(SRNS)供应链管理(SCM)最近举办了与第一个人员增强峰会,以加强与25个员工公司的关系,并为FISS SRNS SCM闭上了23财年,向人员合作伙伴授予了超过1.15亿美元的授予,超过了所有以前的记录。 “峰会为我们正在更改即将到来的财政年度以及当前的工具和实践所利用的工具和实践提供了完美的路线图,”高级董事供应链采购说。 “我们的目的是回答人员配备合作伙伴的重复问题,保持高度遵守合同条款和法规,并减少整体入职周期时间。”SRNS SCM闭上了23财年,向人员合作伙伴授予了超过1.15亿美元的授予,超过了所有以前的记录。“峰会为我们正在更改即将到来的财政年度以及当前的工具和实践所利用的工具和实践提供了完美的路线图,”高级董事供应链采购说。“我们的目的是回答人员配备合作伙伴的重复问题,保持高度遵守合同条款和法规,并减少整体入职周期时间。”
摘要:全球贸易中航运业务的重要性要求全面了解其可持续性。这取决于船舶结构和重要系统(如船舶推进发动机)的完整性/性能。本研究论文介绍了一种自适应机器学习形式——贝叶斯网络在考虑非线性和非连续故障相互作用的船舶推进发动机故障评估中的应用。该模型捕捉关键故障影响因素及其复杂的相互作用,以预测船舶能源系统的故障概率。进行了敏感性和不确定性分析,以确定关键故障影响因素对船舶推进发动机可靠性的影响程度以及先前数据处理中的相关不确定性。该模型在远洋船舶的推进发动机上进行了测试,以根据故障原因之间的逻辑依赖关系预测故障可能性。基于规范概率算法分析了两种情景,结果表明,基于三种关键故障模式的证据,船舶推进发动机故障可能性分别增加了 11.8%、8.2% 和 9.4%。该模型表现出自适应/动态能力,能够捕捉新的故障信息并更新系统的故障概率。所提出的方法为关键船舶能源系统的完整性管理提供了状态监测工具和预警指南。
关于落基山研究所落基山研究所成立于 1982 年,是一家独立的非营利组织,旨在通过市场驱动的解决方案改变全球能源系统,以适应 1.5°C 的未来,为所有人创造清洁、繁荣、零碳的未来。我们在世界上最关键的地区开展工作,并与企业、政策制定者、社区和非政府组织合作,以确定和扩大能源系统干预措施,到 2030 年将温室气体排放量减少至少 50%。落基山研究所在科罗拉多州巴萨尔特和博尔德、纽约市、加利福尼亚州奥克兰、华盛顿特区和北京设有办事处。有关落基山研究所的更多信息,请访问 www.rmi.org 或在 Twitter 或 Facebook 上关注我们 @RMICaribbean。
本指导文件仅供评论之用。有关本草案的意见和建议应在《联邦公报》上公布指导草案发布通知后 90 天内提交。请将电子意见提交至 https://www.regulations.gov。请将书面意见提交至食品药品管理局档案管理人员 (HFA-305),地址:5630 Fishers Lane, Rm. 1061, Rockville, MD 20852。所有意见均应注明《联邦公报》上公布的发布通知中所列的档案编号。如对本草案有任何疑问,请联系 (CDER) Jennifer Mercier,电话:301-796-0957,或 (CBER) 沟通、推广和发展办公室,电话:800-835-4709 或 240-402-8010。
FMICS 是工业关键系统形式化方法国际会议,今年正值成立 25 周年。FMICS 社区很早就认识到了验证技术的革命性潜力。其成员致力于发展这项技术,并将其应用于复杂工业关键系统的验证。这 25 年带来了许多亮点,例如更好的规范语言、更高效的验证算法、具有里程碑意义的工具以及以奖项形式出现的学术认可。但也有许多成功的工业应用,“验证工程师”作为新职位的兴起,以及专注于形式化验证技术的工业实验室的出现。经过几十年的辉煌,形式化方法似乎正处于转折点。在工业界,许多精通形式化方法的工程师被赋予了新的优先事项,尤其是在人工智能领域。同时,高等教育中的形式化验证格局却很分散。在许多大学,形式化方法课程正在缩减,可能是因为它们被认为太难了。我们的知识无法保证传给下一代。所以我们不能放松警惕。作为庆祝活动的一部分,为了应对这一转折点,我们对一些在形式化方法领域发挥了重要作用的国际知名科学家进行了调查,这些科学家无论是在 FMICS 会议系列内还是在会议系列之外。我们报告