自去年 12 月以来的四个月里,人们通过微波无线电发射发现了一系列太空分子。首先是伯克利的研究小组发现了氨(Cheung, AC, Rank, DM, Townes, CH, Thornton, DD 和 Welch, WJ,Phys. Rev. Lett., 21, 1701; 1968),然后是同一个团队发现了水(Nature, 221, 626; 1969),现在,更令人惊讶的是,位于西弗吉尼亚州格林班克的国家射电天文台的 L. E. Snyder、D. Buhl、B. Zuckerman 和 P. Palmer 发现了甲醛(Phys. Rev. Lett., 22; 1969)。麻省理工学院的一个小组也一直在使用阿雷西博望远镜寻找硫氢化物的信号,但迄今为止没有成功(Meeks, ML, Gordon, MA, and Litvak, MM, Science, 163, 173; 1969)。无论如何,伯克利团队在哈特克里克天文台发现来自氨和水的信号,一定是受到了 C. Townes 教授的影响。Townes 教授最近从麻省理工学院搬到了伯克利,似乎把他对微波频谱的兴趣也带了过来。显然,这种热情已经蔓延到了西弗吉尼亚州,在那里,用 140 英尺望远镜调查的 23 个来源中,有 15 个发现了甲醛 (HCHO)。12 月之前,唯一从无线电发射中在太空中发现的分子是羟基自由基,它是 1963 年在麻省理工学院发现的。到目前为止,所有被探测到的分子辐射都来自星系的低温区域,因此这些信号不仅仅是好奇。低温区域是尘埃和气体云,据信它们正在收缩成恒星和行星系统。除了射电测量有望提供恒星形成过程中分子浓度和温度的估计值外,还可能揭示原始大气的成分,从而揭示生命的起源。甲醛的发现被认为意义重大,因为它间接证明了低温星际云中存在甲烷。不幸的是,似乎没有希望通过射电辐射在太空中探测到甲烷,而甲烷是生命起源所必需的化学物质之一,但射电天文学现在有可能至少部分回答氨、水和甲烷等物质最初是如何出现在原始大气中的问题。这就引出了一个问题:这些分子是如何在太空中形成的。星际尘埃粒子是冷云的重要组成部分,它们可能会促进一种过程,如果原子碰撞占主导地位,这种过程发生的可能性就会小得多。
重要:为了使产品适合您的特定目的,建议先前使用测试。建议您自己决定安全,合适的处理,存储,使用和处置。本产品技术表中包含的所有信息均提供您的考虑,调查和验证。数据是真诚地呈现的,被认为是可靠的。您不应将描述,信息,数据或设计视为我们销售条款和条件的一部分。我们明确不承担责任或责任,因为依赖此处提供的信息而造成的任何损失,损失或费用。
1.文档目的 ..............1 2.文档内容概述 ..........3 3.背景 ..................5 污染物性质 ...............5 生产和用途概述 ........8 4.甲醛排放源 .........13 甲醛产生 ...........13 脲醛树脂和三聚氰胺甲醛树脂生产 ................23 酚醛树脂生产 ......29 聚缩醛树脂生产。。。。。。。。。。41 六亚甲基四胺生产。。。。。。。49 季戊四醇生产。。。。。。。。。。。52 1,4-丁二醇生产。。。。。。。。。。。57 三羟甲基丙烷生产。。。。。。。。.57 4,4-亚甲基二苯胺生产 .......59 邻苯二甲酸酐生产 ........60 使用甲醛基添加剂固体尿素和尿素甲酸酯肥料生产 ....................63 各种树脂应用 ........67 使用甲醛作为原料制造次要产品 .................73 甲醛的其他商业/消费者用途 .....。。。。。。。。。。75 燃烧源。。。。。。。。。。。。。..78 石油炼制 .................84 沥青混凝土生产与使用 .....92 大气中通过光氧化产生甲醛 ..............98 5.源测试程序 ...。。。。。。。。。。。100
1.1 Scope ............................................................................................................................................ 17 29
将甲烷氧化为增值化学物质提供了一个机会,可以将这种丰富的原料用于可持续的石化化学。不幸的是,由于选择性差和目标产品的收益率较低,因此此类技术的竞争不足。在这里,我们显示了一个光子 - 光驱动的级联反应,该反应允许甲烷转化率以401.5μmolH -1(或40,150μmolG -1 H -1)的前所未有的生产力甲醛和高度选择性的90.4%在150°C的高度选择性。具体而言,甲烷首先用水原子装饰的ZnO催化剂,首先与水反应,通过光催化选择性地产生甲基氢过氧化物,然后进行热编组分步骤产生甲醛。单个RU原子作为电子受体,改善电荷分离并促进光催化中的氧气还原。这种反应途径以最小化的能耗和高效率提出了一种有希望的轻烷烃转化的途径。
已开发出一种通过离子排斥和离子交换分离,然后进行安培检测,测定空气样品提取物中甲醛的方法。已确定最佳分离的最佳洗脱液组成和分离柱,以及最佳检测的最佳工作电极、电解质和施加电位。使用内部标准化来校正检测器漂移。对有机酸、其他醛和醇进行了干扰研究。使用含有亚硫酸氢盐水溶液的吸收器进行收集,与 2,4-DNPH 方法(也使用吸收器)进行了并排比较研究。该方法的检测限为 1 ng(在溶液中)。该方法已用于测定 UNLV 校园空气中的甲醛浓度。该方法也可能适用于生物和食品样品分析。
甲醛 (FA) 是一种普遍存在的环境污染物,国际癌症研究机构将其列为 I 类人类致癌物。此前,我们报道过,甲醛会在接触的工人中诱发血液毒性和染色体非整倍性,并在实验动物的骨髓和造血干细胞中产生毒性。利用酵母中的功能性毒理基因组学分析,我们确定了调节真核 FA 细胞毒性的基因和细胞过程。虽然我们在酵母中验证了其中一些发现,但 FA 在人类细胞中的许多特定基因、通路和作用机制尚不清楚。在当前的研究中,我们应用了全基因组、功能丧失的 CRISPR 筛选来识别人类造血 K562 细胞系中 FA 毒性的调节剂。我们评估了 40、100 和 150 μM FA(分别为 IC10、IC20 和 IC60)的细胞易感性和抗性的遗传决定因素
甲醛 (FA) 是一种普遍存在的环境污染物,国际癌症研究机构将其列为 I 类人类致癌物。此前,我们报道过,甲醛会在接触的工人中诱发血液毒性和染色体非整倍性,并在实验动物的骨髓和造血干细胞中产生毒性。利用酵母中的功能性毒理基因组学分析,我们确定了调节真核 FA 细胞毒性的基因和细胞过程。虽然我们在酵母中验证了其中一些发现,但 FA 在人类细胞中的许多特定基因、通路和作用机制尚不清楚。在当前的研究中,我们应用了全基因组、功能丧失的 CRISPR 筛选来识别人类造血 K562 细胞系中 FA 毒性的调节剂。我们评估了 40、100 和 150 μM FA(分别为 IC10、IC20 和 IC60)的细胞易感性和抗性的遗传决定因素
摘要在许多发展中国家中使用超塑料的使用非常罕见。然而,其包含在混凝土中增强了混凝土的机械和耐用性能。文献中存在关于混凝土中磺化萘甲醛(SNF)超塑料的性能的文献差距,尤其是在撒哈拉以南建筑业中,生产中使用的聚集物的质量值得怀疑。这项研究产生了用局部采购的坑砂生产的两批混凝土,其特征强度为30 MPa。一批没有SNF超塑料来作为对照,而另一批是通过掺入超塑料制成的。研究了压缩和弯曲强度,弹性和动态模量的新鲜特性,以及缩写和弯曲强度的硬化特性。此外,研究了包括吸附,吸水,吸水性,氯化物穿透,电阻率和酸发作的耐用性指标。该研究的结果表明,在混凝土中掺入SNF超塑剂可提高可加工性和混凝土内离子迁移率的降低。这归因于互连孔的存在下降,从而导致机械性能的显着增强,例如增加强度,以及弹性和动态模量的改善。此外,含有SNF超级增塑剂的混凝土比没有SNF超塑料的混凝土更好地保护混凝土免受酸性攻击。该研究建议在混凝土中使用SNF超塑剂来提高可加工性,通过更少的互连孔减少离子运动以及增强的机械性能,从而有可能提高整体耐用性。关键字:SNF超显影剂,新鲜特性,硬化特性,耐用性指标,酸性攻击,本地沙
众所周知,氮是水产养殖中的主要污染物,对鱼类可能有毒性作用。当吸收有毒浓度时,氮可以进入鱼类的血液,影响血液参数,免疫反应并引起氧化损伤和神经毒性。最近,进行了一项研究,以研究氨,肝,生长,组织损伤和免疫指数在甲醛甲醛(FBS)存在下的毒性作用。该研究涉及360 C. rubrofuscus,它们在24个水族箱中随机分布,FBS与将氨的比例与31mg/l:1mg/l。实验是在6种治疗中用15条鱼进行的,并进行了4次重复,直到观察到50%死亡率。研究了鱼类的生长,组织学,血液学,免疫力,肝酶和生化特征,并使用单向方差分析(单向ANOVA)和Duncan的测试对结果进行了分析。研究发现,在FBS存在的情况下,锦鲤鱼的血液,免疫和肝脏指标发生了变化。此外,将FBS添加到水族馆水中减少了鱼储罐中的氮化合物,从而进一步降低了鱼类水族箱中的氮化合物。