当今的整个行业(材料供应商,半导体铸造厂,各种芯片供应商,标准组织,测试设备供应商,包装套装)正在以100克的线路价格增长其业务,并为生产率为200克。这些线路速率用于生成产品,例如400Gbps,800Gbps,1600Gbps(或1.6Tbps),3200Gbps,6400Gbps,6400Gbps及以后的汇总数据速率的光学插管收发器。公司希望在2023 - 2024年的时间范围内完成200G线路速率的设计,但他们也在寻找如何进一步延长数据速率和线路速率。线路速率的300克和400克的兴趣仍处于早期阶段,但是,当今有效的电磁聚合物提供了调制器设备演示,以实现这些目标。被动聚合物和POF将能够用波导和接口耦合组件作为补充平台的一部分来支持这些扩展线路速率。在未来十年中,主动和被动聚合物对这些性能指标的商业化指标。
摘要:芯片被视为克服摩尔定律放缓和优化集成电路设计超越单芯片物理边界的战略选择。业界已报道了使用芯片和先进封装解决方案进行有效系统设计的几个例子。这些设计为方法和工具提供了巨大的机遇,但也带来了挑战。添加多芯片选项大大增加了设计空间,必须开发新的分区和评估工具。EDA 行业已经为设计师提供了部分集成的解决方案,但还需要做更多的工作来提供无缝的环境。那么基于芯片的设计是否是我们对集成系统设计的一次革命?多芯片模块在 20 世纪 80 年代甚至更早的时候就引起了业界和学术界的关注。然而,在那个时期诞生的几家初创公司没有留下任何重大遗产就倒闭了。与多芯片模块相比,基于芯片的设计是一种渐进式创新吗?与过去相比,现在哪些机会引人注目?基于芯片的设计是否会产生专门从事这项技术的新公司,这些公司将提供类似于我们在代工厂看到的技术服务? EDA 行业在促进生态系统方面将发挥什么作用?
磁性随机存取存储器 (MRAM) 作为一种新兴的非挥发性存储器,具有读写速度快、耐久性高、存储时间长、功耗低等特点,几年前就引起了台积电、三星、格罗方德等大型半导体代工厂的极大兴趣 [1−5]。一方面,MRAM 的高性能特性使其成为 28nm CMOS 技术节点以下嵌入式闪存 (e-flash) 的重要替代解决方案,而 e-flash 存在严重的经济障碍,阻碍了其进一步微缩 [6]。另一方面,MRAM 的目标是成为静态随机存取存储器 (SRAM) 等工作存储器的替代品,以解决先进 CMOS 节点中可能出现的严重漏电问题 [7,8]。然而,由于速度限制和耐久性问题,很难取代L1或L2缓存SRAM,尤其是对于两端自旋转移矩(STT)MRAM [ 9 − 11 ] 。因此,需要进一步探索下一代MRAM器件。
欢迎来到印度科学研究所的纳米科学与工程中心(CENSE)。成立于2010年,并于2015年由印度总理正式致力于该国,Cense已成为科学和工程学中不同学科的熔炉。中心的跨学科研究正在通过纳米规模的科学发现和工程创新来定义新的视野。锚定在Cense的国家纳米制造中心(NNFC)是世界上最好的大学铸造厂之一。微型和纳米表征设施(MNCF)在世界任何地方的学术环境中也是其中一种。这种无与伦比的物理基础设施与该中心的特殊人力资本相辅相成,包括教职员工,学生,技术,行政和支持人员。这些成分的融合提供了一个独特的平台,可以用纳米材料和纳米构造进行实验和创新,并具有前所未有的精度。该中心的研究和教育针对的是电子,传感器,光子学,国防,空间,能源,医疗保健和农业等不同应用领域。基本主题是通过将学术研究转化为有用的产品来产生社会影响。
磁性随机存取存储器 (MRAM) 作为一种新兴的非挥发性存储器,具有读写速度快、耐久性高、存储时间长、功耗低等特点,几年前就引起了台积电、三星、格罗方德等大型半导体代工厂的极大兴趣 [1−5]。一方面,MRAM 的高性能特性使其成为 28nm CMOS 技术节点以下嵌入式闪存 (e-flash) 的重要替代解决方案,而 e-flash 存在严重的经济障碍,阻碍了其进一步微缩 [6]。另一方面,MRAM 的目标是成为静态随机存取存储器 (SRAM) 等工作存储器的替代品,以解决先进 CMOS 节点中可能出现的严重漏电问题 [7,8]。然而,由于速度限制和耐久性问题,很难取代L1或L2缓存SRAM,尤其是对于两端自旋转移矩(STT)MRAM [ 9 − 11 ] 。因此,需要进一步探索下一代MRAM器件。
大小的铸造厂。如果您的铸造厂是现有的来源,请确定2008日历年的金属熔体生产。如果产量等于或小于20,000吨,则您的铸造厂被认为很小。如果生产超过20,000吨,则认为它很大。如果您的铸造厂是一个新来源,并且年度熔体容量等于或小于10,000吨,则您的铸造厂被认为很小。如果超过10,000吨,则您的铸造厂被认为很大。年度金属熔体产量是指在给定日历年内,在铸造厂的所有金属熔炉中充电的金属总量。年度金属熔体容量取决于炉子是否允许空气质量部门允许使用炉子。如果不是,则可以通过假设炉子以每年8,760小时的方式运行来确定容量。如果允许它们,则容量由每年计算的最大允许生产率确定。如果许可证限制了炉的工作时间,则使用允许的小时将最大允许的金属生产速率用于年度。
可乐是送入爆炸炉中的最重要的原材料之一。它对高炉操作和热金属质量具有巨大影响。冶金可乐是铁和钢生产中的重要组成部分,主要用于将铁矿石减少到铁中,占可乐消耗的90%以上。剩余的平衡被用作铸造焦炭,采用了不同的焦煤,更长的焦化时间和较低的温度,用于金属熔化和铸造[1-7]。可乐极大地促进了热金属生产的成本,这使得对铁工业的竞争力至关重要。全球可乐的大部分生产都依赖于副产品可乐烤箱电池,通常与铁和钢生产设施集成。在激烈的竞争和煤炭基础上,降低可乐的生产成本是铁和钢铁行业的关键挑战[8-11]。可乐植物的自动化,控制和测量系统:优化冶金可乐生产
开发下一代光子集成电路 在过去二十年里,硅光子学 1,2 已经从学术研究转向广泛的工业应用。然而,尽管硅光子学 3 取得了商业上的成功,被用于数据中心的收发器,但硅并不是光子学和光学的理想材料。硅的带隙为 1 eV,因此不能用于可见光的生成和处理 4,5 ;另外,硅不能承受高光功率。同样,即使在最先进的全球代工厂的硅光子商业生产线中,使用数十亿美元的制造设备,损耗水平也只有每厘米 1dB。事实上,在芯片中获得超低损耗是极具挑战性的。对如此低损耗的追求不仅仅是一项学术努力:从历史上看,高锟的工作还为损耗仅为 1dB/km 的光纤奠定了基础,这导致了 2008 年诺贝尔物理学奖并彻底改变了通信领域 6 。然而,直到最近,低损耗集成光子电路的进展几十年来一直停滞不前——在 dB/cm 的水平。然而,芯片上的超低传播损耗对于众多未来应用至关重要。
集成电路制造 - 我们的绝大多数集成电路都是使用广泛可用的CMOS工艺制造的,该过程旨在提供更大的灵活性,以使独立的铸造厂以较低的成本来制造集成电路。通过外包制造,我们能够避免拥有和经营自己的制造设施相关的成本。这旨在使我们能够将精力集中在产品的设计和营销上。我们试图与铸造伙伴紧密合作,以每月的方式预测我们的制造能力要求。我们还寻求密切监视铸造厂的生产,以帮助确保一致的总体质量,可靠性和收益水平。我们的集成电路目前是在几个高级制造过程中制造的。由于预计更精确的制造过程将导致性能提高,较小的硅芯片尺寸和较低的功率要求,因此我们不断寻求评估迁移到较小的几何过程技术的收益和可行性,以降低成本并提高性能。
职业经历 ADI 公司,加利福尼亚州圣何塞 2005 年 12 月 – 2022 年 7 月 上市公司 (纳斯达克股票代码:ADI) 营收 84 亿美元,拥有 12.5 万多名客户,SKU 超过 10 万个,是汽车、消费、国防、工业和医疗设备市场的半导体集成电路 (IC)、软件和子系统制造商。质量工程高级总监 2021 年 8 月 - 2022 年 7 月,执行董事全球供应链质量 2016 年 6 月 - 2021 年 8 月,全球供应链质量总监 2014 年 3 月 - 2016 年 6 月,晶圆厂和代工厂质量高级经理 2011 年 5 月 - 2014 年 3 月,晶圆厂质量经理 2005 年 12 月 - 2011 年 5 月 全球质量领导者,负责管理跨大洲、时区、半球和文化的矩阵组织中供应链的高影响力计划、举措和活动,创造超过 80 亿美元的收入。为多家内部半导体晶圆厂和测试设施、外部代工厂、OSAT 和原材料供应商实现了质量转型。在转型/收购期间获得持续晋升。• 负责开发和维护质量管理体系 (QMS) 和流程的全球高管,包括政策、