13 Toews,“AI 芯片的地缘政治将决定 AI 的未来”。14 Tarasov,“苹果芯片实验室内部,这是该公司几十年来最“深刻变革”的发生地”;路透社,“彭博新闻报道,苹果计划以专注于 AI 的 M4 芯片彻底改造 Mac 产品线”。15 Satoh,“AMD 将考虑与台积电合作的“其他”代工厂:首席执行官 - 日经亚洲”。16 路透社,“Nvidia 在 AI 芯片领域的主导地位阻碍了对竞争对手初创企业的投资”。17 高通,“高通在 2023 年骁龙峰会上为设备带来破纪录的生成式 AI | 高通”。18 Michelle Cheng,“Nvidia 最大的客户也是这家 AI 芯片制造商的最大威胁”。19 Michelle Cheng。 20 Bratton,“谷歌的新芯片有望挑战 Nvidia、微软和亚马逊”。21 Bratton。22 Desineni 和 Tuv,“英特尔半导体制造环境中的高价值 AI。英特尔白皮书。”;Wheatley,“英特尔在先进芯片制造工艺方面取得进展,力争在 AI 领域占据一席之地 - SiliconANGLE”。23 路透社,“Nvidia 在 AI 芯片领域的主导地位阻碍了对竞争对手初创企业的投资”。24 Patil 等人,“半导体设计领导地位面临的日益严峻的挑战”。25 Zewe,“麻省理工学院制定战略,帮助美国重新获得半导体超级大国地位”。26 Lin,“在 AI 芯片竞赛中,谷歌 DeepMind 使用 AI 设计专用半导体”。
领先的半导体公司,例如Apple和高通公司部署第三方铸造厂,可以访问公司的集成电路(IC)设计。IC供应链中可能存在攻击者,可以通过启动面向硬件的攻击来损害制造,测试,组装和包装期间基础硬件的安全性。逻辑锁定旨在保护整个全球化供应链中IC设计的知识产权,但是,基于量身定制的机器学习模型的帆攻击绕开了组合逻辑锁定。因此,我的夏季研究项目的目的是实施Unsail,这是一种效应技术,以克服无甲骨文,基于机器学习的逻辑锁定攻击。Unsail的主要算法涉及插入像帆一样混淆机器学习(ML)模型的指定钥匙门结构。首先,我通过准备处理Gate Level Netlists的C ++脚本实现了随机逻辑锁定。i通过准备单独的脚本编码了构成密钥输入的指定门。然后,我合成了锁定的电路,然后制定了一种算法,并对其进行了编码,以比较合成前后的密钥门结构。比较后,我能够实现Unsail的主要目的,将指定键门结构插入合成的锁定电路(合成过程中修饰的门)中,以最终实现Unsail。
( SHRI JITIN PRASADA ) (a) 至 (c): 芯片初创 (C2S) 计划已由电子和信息技术部于 2022 年启动,作为能力建设计划,为期 5 年,旨在培养 85,000 名具有行业资质的 B.Tech、M.Tech 和 PhD 级别的人才,专门从事半导体芯片设计、超大规模集成 (VLSI) 和嵌入式系统设计领域。该计划采用综合方法,为学生提供芯片设计以及这些设计的制造和测试的完整实践经验。这是通过与行业合作伙伴合作开展的定期培训课程、为学生提供的指导和芯片设计、制造和测试资源来实现的,包括最先进的电子设计自动化 (EDA) 工具、访问半导体代工厂以制造他们的设计等。C2S 计划是一个持续进行的计划。针对到 2027 年培养 85,000 名人力资源的目标,迄今为止,共有 45,313 名 B.Tech、M.Tech 和 PhD 级别的人力资源已入学并正在接受该计划的培训。ChipIN 中心已在班加罗尔 C-DAC 设立,作为一站式中心,为全国的学术机构/研发组织和初创企业/中小微型企业提供以下支持:
我们的使命 让学生参与到对智力至关重要、对个人有意义且对社会有价值的学习中。 社区 作为埃塞克斯威斯特福德学区的一部分,埃塞克斯高中 (EHS) 为埃塞克斯交界处、埃塞克斯镇和威斯特福德提供服务。这些郊区城镇的总人口为 34,878 人,距离佛蒙特州最大的城市伯灵顿十英里。美国人口普查估计 2020 年奇滕登县的人口为 168,865 人。该地区的大多数居民从事商业、教育和其他职业。埃塞克斯交界处最大的两家雇主是 Global Foundries 微电子工厂和 Green Mountain 咖啡烘焙公司。学校埃塞克斯高中是一所公立中学,招收约 1260 名 9 至 12 年级的学生。2020 年,埃塞克斯高中在《新闻周刊》的全美所有 STEM 高中中排名第 50 位。埃塞克斯高中经新英格兰学校与学院协会认证,并获得佛蒙特州教育署批准。埃塞克斯高中是全国大学招生咨询协会 (NACAC)、新英格兰大学招生咨询协会 (NEACAC) 和新英格兰中学联盟 (NESSC) 创新学校联盟的会员资格。评分和排名埃塞克斯高中不给学生加分或排名。GPA 计算使用以下成绩转换表,在计算平均数之前将 0 到 4.33 的绩点值分配给最终课程成绩。从 2018-2019 年开始,成绩以字母等级报告,及格要求是 60 分及以上。之前成绩以 0-100 的数字形式报告。成绩单将显示最终的字母等级。优等生每门课程的成绩要么为 P(通过),要么为 B 或更高。下面的转换表描述了我们当前的评分系统。
3210 Wood products 3221 Pulp, paper, and paperboard mills 3222 Converted paper products 3231 Printing and related support activities 3242 Integrated petroleum refining and extraction 3243 Petroleum refining without extraction 3244 Asphalt and other petroleum and coal products 3251 Basic chemicals 3252 Resins, synthetic rubbers, and artificial and synthetic fibers and细丝3253农药,肥料和其他农业化学物质3254药物和药品3255涂料,涂料和粘合剂3256肥皂3256肥皂,清洁化合物和厕所制剂3259其他化学产品和制剂3261塑料产品3262 Rubber Products 3262 Rubber Product 3271 Clays Product 3271 CLAYS CLARS PROCKER EXPRORS 3271 CLAYS CLARS PROCKER PRASSERS 3271 CLAYS CLARES PROVER EXPRARES 3271 CLAYS CLARES产品3271 CLAYS CLARES产品3271 CLAYS CLARES产品 Cement and concrete products 3274 Lime and gypsum products 3279 Other nonmetallic mineral products 3311 Iron and steel mills 3312 Steel products from purchased steel 3313 Alumina and aluminum production and processing 3314 Nonferrous metal (except aluminum) production and processing 3315 Foundries 3321 Forging and stamping 3322 Cutlery and hand tools 3323 Architectural and structural metals 3324 Boilers, tanks, and shipping containers 3325 Hardware 3326 Spring and wire products 3327 Machine shop products, turned products, and screws, nuts, and bolts 3328 Coating, engraving, heat treating, and allied activities 3329 Other fabricated metal products 3331 Agriculture, construction, and mining machinery 3332 Industrial machinery 3333 Commercial and service industry机械3334通风,供暖,空调和商业制冷设备3335金属加工机械
作为从研究到商业部署的硅光子学的过渡,有效地将光线融入高度紧凑和功能性的亚微米硅波导的包装解决方案必须是必要的,但仍然具有挑战性。有助于实现大规模集成的220 nm硅在绝缘子(SOI)平台是铸造厂采用最广泛的集成,从而实现了既定的制造工艺和广泛的光子组合库。因此,该平台的高效,可扩展和宽带耦合方案的开发至关重要。利用两光子聚合(TPP)和基于Fermat原理的确定性自由形式的微观启示设计方法,这项工作表明了标准的SMF-28单模式纤维和硅Wave在220 nmSOI SOI平台上的标准SMF-28单模式纤维和硅波波之间的超高效和宽带3-D耦合器界面。耦合器在基本TE模式下达到了0.8 dB的低耦合损失,而1 dB的带宽超过180 nm。宽带操作可实现从通信到光谱的各种带宽驱动的应用。此外,3-D自由形式耦合器还可以极大地容忍纤维未对准和制造可变性,从而使包装要求放松,以降低成本降低资本利用标准的电子包装过程流量。©2024中国激光出版社
e x Cote s ummary the Art Silicon Photonics是光子综合电路(PICS)的有吸引力的技术,因为它直接建立在硅纳米电子世界的极端成熟基础上。因此,它以非常高的收率和低成本的方式打开了通向非常高级照片的路线。更准确地说,硅光子图片如今在200和300mm CMOS铸造厂的商业生产中,具有NM级别的精度和可重复性,从光子学的角度来看是前所未有的。基本技术利用了硅在绝缘子(SOI)晶圆中,其中硅氧化硅层的硅层上的硅层充当了波导的核心,该波导将芯片上的设备互连。或者,SOI晶片被硅晶片取代,用一堆氮化硅波导核心层包围,被氧化硅覆盖层包围。现在,这种氮化硅图片被认为是硅光子家族的组成部分。在此路线图的单独章节中描述了它们。因此,本章主要关注基于SOI的硅光子学,是硅光子学界的主要方式。值得注意的是,近年来,许多SOI PIC平台添加了第二个光子波引导层,是氮化硅层,从而结合了两种方法的最佳方法,并可以提高设计和增强性能的灵活性。
欧洲芯片计划以研究为重点:芯片联合行动是“地平线欧洲”和“数字欧洲”计划下关键数字技术联合行动的战略性重新定位,它将从欧盟、成员国、伙伴国家和私营部门筹集 110 亿欧元,用于加强现有的研究、开发和创新。供应安全,针对企业:《芯片法案》将提供一个框架,通过吸引对先进生产能力和相关创新的投资来提高供应安全。20 亿欧元的芯片基金将为初创企业提供融资渠道,以推动创新并吸引投资者。通过 InvestEU 下的半导体股权投资混合设施将吸引更多资本,以支持中小企业扩大规模和拓展市场。此外,各项规定还支持首创的设施,这些设施被归类为“开放式欧盟铸造厂”,主要为其他工业参与者设计和生产半导体元件,以及“综合生产设施”,为欧洲市场设计和生产元件。支持的形式包括快速通道许可、优先使用试验线以及在成员国提供公共支持时相对宽松的国家援助规则。此外,还将有 300 亿欧元的公共和私人投资。监测和危机应对,以协调为目标:成员国和委员会之间的协调机制将监测半导体的供应和价值链,估计需求和短缺,收集公司情报并确定关键弱点和瓶颈。它将为共同的危机评估提供信息,并协调从新的应急工具箱中采取的行动。
技术程序委员会 模拟电路和技术 主席:Antonio Liscidini,多伦多大学 联合主席:Edoardo Bonizzoni,帕维亚大学 委员会成员:Mark Oude Alink,特温特大学 Devrim Aksin,ADI Ping-Hsuan Hsieh,国立清华大学 Hiroki Ishikuro,庆应义塾大学 Mahdi Kashmiri,元数据转换器 主席:Seung-Tak Ryu,韩国科学技术研究院 联合主席:Lukas Kull,思科系统 委员会成员:Vanessa Chen,卡内基梅隆大学 Chia-Hung Chen,国立交通大学 Jin-Tae Kim,建国大学,韩国 Martin Kinyua,台积电 Shaolan Li,佐治亚理工学院 Qiang Li,电子科技大学 Yong Liu,博通 Zhichao Tan,浙江大学 Filip Tavernier,天主教鲁汶大学 Haiyang (Henry) Zhu,ADI 数字电路、SoC、和系统主席:Gregory Chen,英特尔公司联合主席:Saad Bin Nasir,高通委员会成员:Behnam Amelifard,高通Elnaz Ansari,谷歌Ningyuan Cao,圣母大学Jie Gu,西北大学Monodeep Kar,IBMWin-San (Vince) Khwa,台积电Bongjin Kim,加州大学圣巴巴拉分校Alicia Klinefelter,nVidiaYoonmyung Lee,成均馆大学Yingyan (Celine) Lin,佐治亚理工学院Yongpan Liu,清华大学Divya Prasad,AMDElkim Roa,格罗方德半导体Visvesh Sathe,佐治亚理工学院Shreyas Sen,普渡大学WeiWei Shan,东南大学,南京
执行摘要 最新技术摘要 在过去 20 年中,硅光子学已成为光子集成电路 (PIC) 的一项极具吸引力的技术,因为它直接建立在硅纳米电子领域的极度成熟基础之上。因此,它开辟了一条通往非常先进的 PIC 的道路,具有非常高的产量和低成本。更准确地说,今天,硅光子 PIC 正在 200 毫米和 300 毫米 CMOS 代工厂中以纳米级精度和可重复性进行商业化生产,这从光子学的角度来看是前所未有的。基本技术利用绝缘体上硅 (SOI) 晶圆,其中埋氧层顶部的硅层充当连接芯片上器件的波导的核心。由于硅是导光材料,氧化硅是包层,该技术可以解决波长范围约为 1 至 4 m 的应用,从而包括以 1300nm、1550nm 和 1550(+)nm(分别为 O、C 和 L 波段)为中心的非常重要的光纤光谱带。硅光子学已经成为十多家公司(其中大部分是无晶圆厂公司)用于数据中心和电信网络中高数据速率收发器产品的首选技术。总的来说,他们向市场部署了估计数百万个硅光子收发器。大约有 20 个硅光子制造平台(部分为工业平台,部分为支持原型设计和小批量制造的研究机构平台)已经建立,这些平台基于现有基础设施和源自硅电子行业的专有技术(见附录 A1)。典型平台允许集成高速调制器和高速 Ge 探测器,符号率范围为 50 至 100 Gbaud,以及用于光束组合/分裂、波长选择功能、偏振选择功能和片外耦合的高级无源功能。一些平台允许其他功能,例如与高级电子设备的集成(单片或混合)、光源的集成(异构或混合)以及面向传感的功能(例如微流体)。大多数平台的运作方式类似于代工厂:任何最终用户都可以访问它们,无论是全掩模版/全晶圆批次 (FRFL) 模式还是成本分摊多项目晶圆 (MPW) 模式,其中最终用户可以提交部分掩模版的设计,并将收到几十个处理过的芯片而不是完整的晶圆。 FRFL 模式成本高昂(数十万欧元/美元),但每芯片成本较低(每芯片约 10 欧元/美元),而 MPW 模式每设计成本更实惠(数十万欧元/美元),但每芯片成本约 1000 欧元/美元。当扩展到更高产量(例如 1000 片晶圆)时,芯片成本可降至每芯片 1 欧元/美元以下,因为固定掩模和间接成本在整个批次中摊销。当代工厂基础设施的投资已经折旧或与其他用户共享时,较低的单芯片成本也会受益。芯片代工厂向其客户提供工艺设计套件 (PDK)。这些 PDK 详细说明了给定平台的设计规则,并包含基本组件和电路库。硅光子学 PDK 的成熟度尚未达到 CMOS IC 代工厂的水平。今天,硅光子学 PDK 仅包含非常基本的构建模块库,特别是对于 MPW 操作模式。未来的硅光子学 PDK 必须包含组件和电路的紧凑模型,其参数基于经过验证的测量数据,并考虑到晶圆之间和晶圆之间的工艺变化。