乙烯和丙烯之间的生产比取决于所使用的催化剂,反应条件和技术。上面的两个反应步骤都出现在催化流动型反应器中。通过不必要的反应形成的可乐会随着时间的推移积聚在催化剂中,这可以降低其性能。因此,将催化剂的一部分从反应器连续移至再生单元。借助于再生反应器中的空气或氧气从催化剂中取出焦炭。反应产生的丙烯与乙烯之间的比率也可以通过操作条件来调整:范围为1.3至1.8。将转换反应器的产品流喂入分离部分,以去除水并恢复未反应的DME。富含烯烃的流被定向到分馏部分,其中所需的产物乙烯和丙烯被回收。残留气体和由介质沸腾的烃组成的流也在分离部分中回收。来自分离截面的碳氢化合物混合物被送入裂纹反应器,为乙烯和丙烯产生提供了另一种来源。开裂产物富含烯烃,该烯烃被发送到分离部分以回收乙烯和丙烯。裂纹部分的副产品是C4烯烃(图片中的“高沸点烃”)的混合物(Jasper,S。,El-Halwagi,M。M. M,2015年)。
对转移性癌症和概念验证临床试验的新出现的生物学理解表明,逐渐消失所有严重的疾病对改善患者预后具有很大的希望。但是,通过常规外束放射系统的多个目标消融是繁重的,这限制了大多数晚期疾病患者的研究和利用。要克服这一后勤障碍,需要技术创新。生物学引导的放射疗法(BGRT)是一种新的外束放射疗法递送方式,将正电子发射断层扫描(PET-CT)与6 mV线性加速器相结合。关键创新是线性加速器对外向肿瘤宠物的连续响应,并在次生潜伏期内用Radi-heT-其他疗法的束带发射。这允许沉积剂量实时跟踪肿瘤。多个新硬件和算法进步进一步促进了这种低延迟反馈过程。通过将肿瘤转化为静脉注射放射性示踪剂后,BGRT有可能以有效的方式使单个患者的完全转移消融,并对患有转移性疾病的整个群体进行可扩展。未来趋势可能会进一步增强诊所中BGRT的实用性,因为该技术与放射疗法中的其他创新相吻合,包括新型剂量绘画和分级方案,放射线分析和新的放射性示例。
对脑转移(BM)立体定向放射外科手术(SRS)的临床管理通常具有挑战性,尤其是对于单个或寡核-BM,对全身治疗难治,而没有任何中央神经外神经系统(CNS)活性疾病(孤立的CNS失败)[1,2] [1,2]。确定肿瘤再生(真实进展),辐射损伤或变性肿瘤的瞬时增大(伪产生)通常很困难,并且诊断标准仍然有争议且不清楚[1-3]。与单或多裂(FR)SRS(RE-SRS)的重新辐照是这种情况的可用治疗选择之一,被认为具有可行的肿瘤组织的优势;目标定义,边缘剂量分馏和病变边界外部和内部的剂量梯度在设施之间差异很大,而最佳方案仍未确定[3,4]。鉴于不适合医疗管理的辐射损伤的风险,通常会针对RE-SRS施用一种非治愈性和保守剂量[1,2]。此外,经常使用相对均匀的靶剂量,尤其是在相当大的基于Linac的SR中,无论它是初始治疗还是重新治疗[5]。SRS失败后的持续可行组织可能与脑肿瘤界面差不良有关,并且对深刻侵袭周围的实质有很高的倾向,从而导致治疗性缓解[6]。
使用每月石油供应报告系统(MPSRS),美国能源信息管理局(EIA)生产石油供应月(PSM)和石油供应年度报告(PSA)。PSM和PSA中的数据描述了原油,碳氢化合物液体液体(包括天然气液体和炼油厂烯烃)的供应和处置,在美国,美国主要地理区域在州一级的数据。数据描述了国防区(PADD)运动的生产,进出口,石油管理以及美国的库存(50个州和哥伦比亚特区)。选定的数据也可用于美国领土和财产。报告宇宙包括从事主要供应活动的运营商,包括精炼,汽油汽油混合物,天然气加工和分馏,PADD Inter-PADD运输,进口商和主要库存持有人。当汇总时,这些部门的运营商报告的数据将用于推导美国的石油产品的消费。每月工作日的最后一个工作日通常会在PSM中发布月度和年度数据。每月在每个参考月末结束后约60天提供每月数据。通常在每年8月底在PSA中发布的每月数据以及年度总计和平均值。
乙烷价格波动 通常,回收丙烷和重组分足以满足大多数天然气管道热值规格,但含有超过 12% 摩尔乙烷的非常丰富的气体除外。当乙烷利润为负时,考虑到电力、运输和分馏成本后,回收的乙烷的价值可能低于乙烷的燃料价值(如果乙烷留在残余气体中)。在这些情况下,对于运营商来说,回收超出满足残余气体和液体产品规格所需的乙烷在经济上是没有吸引力的。乙烷价格波动可能是季节性的,也可能持续数年。此外,在运输有限的市场中,由于增加新的 NGL 管道或出口终端,乙烷的区域价格可能会经历阶跃变化。COVID-19 疫情是全球对石油和天然气产品的需求如何变化的一个前所未有的例子。在乙烷价格波动较大的市场中,运营商更喜欢每周或在某些情况下每天灵活调整乙烷回收的程度。如果天然气处理厂能够在高乙烷回收率和高乙烷排斥率之间灵活切换,且在工厂运行期间无需额外设备,则可以显著提高盈利能力。然而,要求的乙烷排斥能力范围相当有限,乙烷回收率在 10% 到 20% 之间,因为乙烷排斥可能会对丙烷回收率产生不利影响,而丙烷通常是一种更有价值的产品。
摘要。胃癌是最常见的最常见的恶性肿瘤,也是全球癌症相关死亡率的第二大主要原因。最近的研究表明,组织干细胞和自我更新转录因子,八聚体结合转录因子4(OCT4)可能与某些肿瘤的发展有关。这项研究的目的是研究正常胃中OCT4和多步胃癌发生期间的表达模式。幽门腹粘膜组织是通过内窥镜检查(由于胃肠道症状上部)和胃切除术(由于幽门腹膜腺癌造影瘤引起的同意的印度人(由于上层胃肠道症状)而获得的。处理了一些组织样品,以组装代表多步癌作用的一系列组织切片,并使用抗OCT4抗体和针对α-L-糖果或N-乙酰-D-乙酰-D-葡萄糖的凝集素进行了探测。使用相同的抗体处理一些组织样品进行亚细胞分馏和蛋白质印迹分析。结果表明,在显微法线正常胃粘膜活检的Pit-Gland单位的增殖细胞室中发现了表达OCT4的细胞。粘膜组织具有严重胃炎的证据,化生/发育不良转化和胃癌显示出OCT4的表达显着增加(标记面积从对照组的2%增加到胃炎和癌组织中的6%和16%),这表明OCT4在癌症早期Devel devel evel opments的早期阶段发挥了作用。此外,数据显示OCT4的亚细胞分布发生了变化,可能是由于抑制作用
摘要:藻类大规模培养系统崩溃导致藻类产量下降,这对经济地生产微藻基生物燃料构成了重大障碍。目前的崩溃预防策略成本过高,无法广泛用作预防措施。细菌在微藻大规模生产培养中无处不在,但很少有研究调查它们在这种特殊环境中的作用和可能的意义。之前,我们证明了选定的保护性细菌群落成功拯救了 Microchloropsis salina 培养物免受轮虫 Brachionus plicatilis 的啃食。在当前的研究中,这些保护性细菌群落进一步通过分为轮虫相关、藻类相关和自由漂浮的细菌部分来表征。小亚基核糖体 RNA 扩增子测序用于识别每个部分中存在的细菌属。在这里,我们表明,轮虫感染培养物中的藻类和轮虫部分中的 Marinobacter 、 Ruegeria 和 Boseongicola 可能在保护藻类免受轮虫侵害方面发挥关键作用。其他几种已鉴定的分类群可能在保护能力方面发挥较小的作用。鉴定出具有保护特性的细菌群落成员将有助于合理设计在大规模培养系统中与藻类生产菌株稳定共培养的微生物群落。这样的系统将减少培养崩溃的频率,并代表一种基本上零成本的藻类作物保护形式。
摘要:在过去70年中,在硫酸盐和有机富的沉积物上发育于硫酸盐富含硫酸盐的富含硫酸盐的地下(pH 3-4)中,在大孔孔上形成了广泛的褐色至黄色层。我们的数据表明,这些层(“大孔表面”)在1 M HCl提取的反应性铁(2-7%的干重)中强烈富集,很大程度上与Schwertmannite和2-线二氢岩结合。这些反应性铁相捕获了大的不稳定有机物(OM)和可提取的磷,可能是源自培养层的。在土壤聚集体中,OM的性质与大孔表面的性质不同,但与基础硫的沉积物(C-Horizon)相似。这提供了证据表明,散装地下土壤中的沉积物OM在很大程度上保存而没有明显的分解和/或分馏,这可能是由于反应性铁相的生理化学稳定而导致的,而反应性铁相也存在于聚集体内。These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/ nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the短期。关键字:酸性硫酸盐土壤,大孔,反应性铁,硫化物氧化,有机碳储存,养分■简介
摘要:在过去70年中,在硫酸盐和有机富的沉积物上发育于硫酸盐富含硫酸盐的富含硫酸盐的地下(pH 3-4)中,在大孔孔上形成了广泛的褐色至黄色层。我们的数据表明,这些层(“大孔表面”)在1 M HCl提取的反应性铁(2-7%的干重)中强烈富集,很大程度上与Schwertmannite和2-线二氢岩结合。这些反应性铁相捕获了大的不稳定有机物(OM)和可提取的磷,可能是源自培养层的。在土壤聚集体中,OM的性质与大孔表面的性质不同,但与基础硫的沉积物(C-Horizon)相似。这提供了证据表明,散装地下土壤中的沉积物OM在很大程度上保存而没有明显的分解和/或分馏,这可能是由于反应性铁相的生理化学稳定而导致的,而反应性铁相也存在于聚集体内。These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/ nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the短期。关键字:酸性硫酸盐土壤,大孔,反应性铁,硫化物氧化,有机碳储存,养分■简介
摘要:CRISPR-Cas9 系统是一种新兴的治疗工具,具有纠正多种遗传疾病的潜力。然而,对于基因治疗应用,需要一种有效的运载工具,能够将 CRISPR-Cas9 成分运送到目标细胞群的细胞溶胶中。在本研究中,我们优化了脂质纳米颗粒 (LNP) 的配方条件,以运送现成的 CRISPR-Cas9 核糖核酸蛋白 (RNP)。复合过程中的缓冲液组成和相对 DOTAP 浓度因 LNP 封装内部生产的 Cas9 RNP 或 Cas9 RNP 与用于基因校正的额外模板 DNA 而不同。通过不对称流场流分馏 (AF4) 对 LNP 的尺寸、表面电荷和等离子体相互作用进行了表征。在荧光报告细胞系上对粒子进行了功能筛选,以进行基因敲除和基因校正。这揭示了 RNP 与柠檬酸盐缓冲液和 PBS 的不相容性。我们证明了用于基因敲除的 LNP 不一定需要 DOTAP,而用于基因校正的 LNP 仅在低浓度的 DOTAP 下才有效。AF4 研究还表明 LNP 与血浆相互作用,但保持稳定,而 HDR 模板似乎有利于 LNP 的稳定性。在最佳配方条件下,我们在纳摩尔浓度的 CRISPR-Cas9 RNP 下分别实现了高达 80% 和 20% 的基因敲除和基因校正效率。