此预印本版的版权持有人于2024年7月18日发布。 https://doi.org/10.1101/2024.07.17.24310568 doi:medrxiv preprint
质量(obs。)强度(obs。)开始末端长度同工序列[m+h]+(theo。)质量类型ION_NAME错误(PPM)错误(AMU)77G7-1 77G7-2 77G7-3 77G7-4 77G7 77G7 2950.524278 4215144.5 287 311 25 25 2 25 2N4R [phospho]?[phospho]?[Phospho]?VQSKCGSKDNIKHVPGGGSVQIVYK 2949.931449 average 287-311_Phospho4_2N4R_a 200.9634884 0.592828515 0 1 0 0 1 2950.524278 4215144.5 256 281 26 2N4R [Phospho]?[Phospho]?VKSKIGSTENLKHQPGGGKVQIINKK 2950.209511 average 256-281_Phospho2_2N4R_a 106.6931135 0.314767038 1 0 0 0 1 2950.524278 4215144.5 350 374 25 2N4R [磷]?[phospho]?[phospho]?[Phospho]?VQSKIGSLDNITHVPGGGNKKIETH 2950.853499 average 350-374_Phospho4_2N4R_a -111.5679467 -0.329220666 0 0 0 1 1 2950.524278 4215144.5 359 383 25 2N4R [Phospho]?[phospho]?nithvpgggnkkiethkltfrenak 2951.112984平均359-383_phospho2_2n4r_a -199.4862197 -0.588706373 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2950.524278 4215144444.5 33444444444444444444年4月444.5日[phospho]?vtskcgslgnihhkpgggqvevkseksekl 2951.130967平均318-344_phospho2_2n4r_a -205.5785917 -0.606666689348 0 0 0 0 1 0 1 0 1 2950.5224215151444.5294444444444444. [磷]?[Phospho]?SKIGSTENLKHQPGGGKVQIINKKLD 2951.151178 average 258-283_Phospho2_2N4R_a -212.4255588 -0.626899938 1 0 0 0 1 2950.524278 4215144.5 277 304 28 2N4R iinkkldlsnvqskcgskdnikhvpggg 2951.385553平均277-304__2N4R_A -291.8204416 -0.861274635 0 1 0 1 0 0 0 0 1 0 1 0 1 2950.524278 4215151515144.5 264 3.2N33R ENERKHQPGGGKVQUVYKPVDLSKVTSK 2951.404132平均264-321__2N3R_A -298.113849 -0.879854446 1 0 0 0 0 0 0 0 0 0 0 1 2950.52424278 421515144.5 344.5 3444.5 3444.5 3472 26 2n2n44.2[Phospho]?KDRVQSKIGSLDNITHVPGGGNKKIE 2952.096111 average 347-372_Phospho2_2N4R_a -532.4462535 -1.571832514 0 0 0 1 1 2950.524278 4215144.5 350 376 27 2N4R [Phospho]?
* 我们保证针对人类、小鼠、大鼠、斑马鱼或线虫基因的预设计 gRNA 的性能。对于其他物种,您可以使用我们的专有算法来设计定制 gRNA。如果您有自己的或来自出版物的 gRNA 原型间隔物设计,请使用我们的设计检查工具评估它们的靶向和脱靶潜力,然后再订购使用我们的 Alt-R gRNA 修饰合成的 gRNA。有关预设计 gRNA 保证的详细信息,请参阅 www.idtdna.com/CRISPR-Cas9。
摘要:使用非侵入性液体活检的无细胞DNA(CFDNA)分析是一种新兴的癌症检测和干预方法。不同的分析方法用于研究CFDNA特征,从而产生了组合不同数据所需的昂贵且较长的分析过程。这项研究研究了在早期结直肠癌检测的背景下,使用CFDNA数据转换用于甲基化分析的CFDNA数据将CFDNA片段大小与拷贝数变化(CNV)相结合。具体而言,我们专注于比较酶和硫酸硫酸盐转换的数据,用于评估属于染色体18的CfDNA片段。染色体18染色体通常在结直肠癌中被删除。我们使用了18号染色体的短和中cfDNA片段的数量,并在一组2959个区域训练了线性模型(LDA),以预测独立的测试集中的早期(I-IIA)结直肠癌。总共获得了87.5%的灵敏度和92%的特异性,在酶转化的文库上获得了。重复亚硫酸盐转换数据上相同的工作流程,其敏感性为58.3%,从而得出较低的精度结果,这意味着酶转化可在整个基因组数据中保留比Bisulfite转化率更好的癌症片段化足迹。这些结果可以作为在同一数据集上使用碎片化和甲基化方法早期检测到结直肠癌的新途径。
摘要:SARS-CoV-2 (SCoV2) 的主要蛋白酶 M pro ,nsp5,是其最具吸引力的药物靶点之一。在这里,我们报告了使用核磁共振波谱 (NMR) 对四个不同文库进行的初步筛选数据,以及对从这些文库中获得的有希望的含尿嘧啶片段 Z604 的详细后续合成。Z604 显示出时间依赖性的结合。其抑制作用对还原条件敏感。从 Z604 开始,我们合成并表征了 13 种通过片段增长策略设计的化合物。每种化合物都通过 NMR 和/或活性测定进行表征,以研究它们与 M pro 的相互作用。这些研究产生了四臂化合物 35b,它可直接与 M pro 结合。35b 可以与 M pro 共结晶,揭示其非共价结合模式,从而填充所有四个活性位点亚口袋。在此,我们描述了 NMR 衍生的片段到命中管道及其在开发 SCoV2 主要蛋白酶抑制剂的有希望的起点中的应用。■ 简介
摘要:(1)背景:此病例对照研究检查了与肥沃对照相比,来自无法解释的复发性妊娠丧失(RPL)或不育的男性是否表现出更高的氧化应激(OS)和精子DNA碎片(SDF)。(2)方法:该研究包括来自每组的30名参与者:无法解释的RPL,无法解释的不育症和可靠的生育能力。数据是在Aalborg大学医院第三级RPL和生育治疗诊所(丹麦AALBORG)收集的,不包括均匀条件的夫妇。精液样品,以进行浓度,运动和形态。通过基于CASA的精子染色质分散测试评估 SDF。 OS被测量为静态氧化还原电位(SORP)。 (3)结果:结果显示组之间没有明显的OS差异。 RPL组的SDF水平明显低于对照组。 在不育组中观察到了SDF和OS之间的显着正相关。 总体而言,这项研究没有发现来自无法解释的RPL或不育和肥沃对照的男性的OS水平的显着差异,而与对照组相比,RPL组的SDF水平较低。 (4)结论:总而言之,尽管现有文献表明OS和SDF是负预后因素,但我们的发现表明它们可能不是RPL和不孕症的可靠诊断标记。SDF。OS被测量为静态氧化还原电位(SORP)。(3)结果:结果显示组之间没有明显的OS差异。RPL组的SDF水平明显低于对照组。在不育组中观察到了SDF和OS之间的显着正相关。总体而言,这项研究没有发现来自无法解释的RPL或不育和肥沃对照的男性的OS水平的显着差异,而与对照组相比,RPL组的SDF水平较低。(4)结论:总而言之,尽管现有文献表明OS和SDF是负预后因素,但我们的发现表明它们可能不是RPL和不孕症的可靠诊断标记。
PDB参考:SARS-COV-2主要蛋白酶,与CPD-1、7GRE复合;与CPD-2,7GRF复合;与CPD-3,7grg复合;与CPD-4,7GRH复合;与CPD-5,7Gri复合;与CPD-6,7grJ复合;与CPD-7,7grk复合;与CPD-8,7grl复合;与CPD-9,7grm复合;与CPD-10、7grn复合;与CPD-11、7Gro复合;与CPD-12、7GRP复合;与CPD-13、7grq复合;与CPD-14、7GRR复合;与CPD-15,7grs复合;与CPD-16、7grt复合;与CPD-17、7gru复合;与CPD-18、7GRV复合;与CPD-19、7grw复合;与CPD-20,7grx相关;与CPD-21、7Gry配合;与CPD-22、7grz复合;与CPD-23、7GS0复合;与CPD-24、7GS1复合;与CPD-25、7GS2复合;与CPD-26、7GS3复合;与CPD-27、7GS4复合;与CPD-28、7GS5复合;与CPD-29、7GS6
摘要:近年来,为微生物病原体检测而设计的环路介导的等温扩增(LAMP)技术已获得了生物医学领域的基本重要性,提供了快速而精确的反应。但是,它仍然存在一些缺点,这主要是由于需要达到63℃的恒温块,这是BSTI DNA聚合酶工作温度。在这里,我们报告了DNA聚合酶I大片段的鉴定和表征,该碎片来自deinococcus radiodurans(Dralf-Poli),该片段在室温下起作用,并且对各种环境应力条件有抵抗力。我们证明,Dralf-Poli在广泛的温度和pH值中显示出有效的催化活性,即使在各种应力条件下(包括干燥)存储后,仍保持其活性,并保留其等温扩增技术所需的链排化活性。所有这些特征使Dralf-Poli成为尖端室温灯的绝佳候选者,该灯有望在护理点快速而简单地检测病原体非常有用。