为女权主义气候正义实现问责制的另一个重要途径。但是,由于缺乏关于政策行动的可比数据,从性别角度来看,有效的气候政策监测已被证明是具有挑战性的。为了解决这一问题,联合国人士正在与国际自然保护联盟和宾汉顿大学的妇女和女童社会正义研究所合作,开展了新的性别平等和气候政策记分卡,旨在汇编有关政策的数据,并系统地监控性别响应式的国家气候政策。
海上和运输行业创新多样性的增长以及自动船舶技术的出现正在吸引有关学术界,工业和监管机构中海上自主地表运营(Mass)运营的讨论。通过预测海员和非隔壁者将参与自主船的关键操作,研究人员正在积极调查未来大众运营商可能要求的新技能和能力。本文作者进行的最新研究涉及一项定性研究,包括对包括海员,海上监管机构,海上教育和培训提供者以及其他海上专家在内的利益相关者的深入访谈。该研究确定了关键的技术和非技术技能,并且需要在框架中包括确定的技能和能力。在本文中,作者建立在过去和现在的研究基础上,以及在海上教育和培训的背景下确定这样做的挑战,迈向建立和实施框架的第一步。挑战是根据文献的评论以及针对其他行业劳动力建立的可用技能和能力框架的研究。确定的挑战(如果解决)将有助于建立一个受管制和条例的结构,以训练大众运营商,并满足海上利益相关者的期望。
脑解码是神经科学的一个关键领域,旨在从获取的脑信号中重建刺激,主要利用功能性磁共振成像(fMRI)。目前,脑解码局限于每个受试者每个模型的范式,这限制了它对为其训练解码模型的同一个体的适用性。这种限制源于三个关键挑战:1)由于大脑大小的差异,不同受试者的输入维度存在固有的差异性;2)独特的内在神经模式,影响不同个体感知和处理感官信息的方式;3)现实世界场景中新受试者的数据可用性有限,阻碍了解码模型的性能。在本文中,我们提出了一种新方法 MindBridge,它仅使用一个模型即可实现跨受试者的脑解码。我们提出的框架建立了一个通用范式,能够通过引入生物启发的聚合函数和新颖的循环 fMRI 重建机制来应对主题不变的表征学习。值得注意的是,通过循环重新
澳大利亚框架为我们的工作奠定了良好的基础,因为它全面地解决了 GAI 在教育领域带来的挑战和机遇。澳大利亚框架通过与教育工作者、行业专家和政策制定者等各利益相关方的广泛合作而制定,提供了一套平衡且经过充分研究的原则。它强调道德考虑、包容性和与更广泛的教育目标的一致性,为我们适应和扩展提供了坚实的基础,确保我们的最终产品在高等教育背景下既相关又有效。
这些材料是初步的、非详尽的,仅以非排他性方式提供,以响应在州教育机构 (SEA) 实施 AI 的考虑需求,仅供参考。这些材料反映了一般见解,可能根据当前可用的信息提出潜在的考虑选项,这些信息本质上是不确定的,可能会发生变化,但不包含确定未来行动方针所需的所有信息。这些材料中包含的见解和概念尚未经过验证或独立核实。对特定产品或组织的引用仅用于说明,不构成任何认可或推荐。这些材料不构成,也不应被解释为政策、会计、法律、医疗、税收或其他受监管的建议,或对任何特定行动方针的建议。这些材料不是结果的保证,不能依赖。未来结果可能与任何预期、预测或预计存在重大差异。特别是鉴于技术发展迅速,这些材料“按原样”提供,不作任何陈述或保证,并且明确声明对任何类型的损失或损害不承担任何责任。接收方对其所有决定、使用这些材料以及遵守适用法律、法规和规定负全部责任。在采取任何具体步骤之前,请考虑寻求法律和其他相关认证/许可专家的建议。
这些材料是初步的、非详尽的,仅供参考,以非排他性方式提供,以响应在 K-12 教育中实施人工智能的考虑需求。这些材料反映了一般见解,并可能根据当前可用的信息提出潜在的考虑选项,这些信息本质上是不确定的,可能会发生变化,但不包含确定未来行动方针所需的所有信息。这些材料中包含的见解和概念尚未经过验证或独立核实。对特定产品或组织的引用仅供说明,并不构成任何认可或推荐。这些材料不构成,也不应被解释为政策、会计、法律、医疗、税务或其他受监管的建议,或对任何特定行动方针的建议。这些材料不是结果的保证,不能依赖。未来结果可能与任何预期、预测或预测的陈述存在重大差异。鉴于技术发展日新月异,这些材料“按原样”提供,不作任何陈述或保证,并且明确声明对任何损失或损害不承担任何责任。接收方对其所有决定、使用这些材料以及遵守适用法律、法规和规定负全部责任。在采取任何具体步骤之前,请考虑寻求法律和其他相关认证/许可专家的建议。
澳大利亚框架为我们的工作奠定了良好的基础,因为它全面地应对了 GAI 在教育领域带来的挑战和机遇。澳大利亚框架通过与教育工作者、行业专家和政策制定者等各种利益相关者的广泛合作而制定,提供了一套平衡且经过充分研究的原则。它强调道德考虑、包容性和与更广泛的教育目标的一致性,为我们适应和扩展提供了坚实的基础,确保我们的最终产品在高等教育背景下既相关又有效。
5. 机构有责任评估系统功能。与所有其他 FedRAMP 授权一样,授权流程会考虑 CSP 保护的系统数据的机密性、完整性和可用性。它不会证明 CSO 功能的性质或质量,也不会证明它最适合机构的特定技术需求。机构使用更广泛的标准来推动自己的采购和评估流程。FedRAMP 可能包括与特定 ET 相关的其他信息的要求(例如技术要求、性能指标或负责任的使用政策)。FedRAMP 致力于为机构提供工具,以保护他们在这些系统中处理的数据的机密性、完整性和可用性。
摘要:由于食物的复杂状态和多样化的物理特性,有效地挖出食品对当前机器人系统构成了重大挑战。为了应对这一挑战,我们相信将食品编码为有意义的有效食品的重要性。然而,食品的独特特性,包括可变形,脆弱性,流动性或粒度,对现有表示构成了重大挑战。在本文中,我们以隐式方式提出了积极感知来学习有意义的食物代表的潜力。为此,我们提出了Scone,这是一个食品搜索机器人学习框架,利用从积极的掌握中获得的表示形式来促进食品可铲政策学习。Scone包括两个Crucial编码组件:交互式编码器和状态检索模式。通过编码过程,Scone能够捕获食品的特性和重要的状态特征。在我们的现实世界中的实验中,Scone在三种不同的难度水平上使用6种以前看不见的食品时,成功率具有71%的成功率,超过了最先进的方法。这种增强的性能强调了Scone的稳定性,因为所有食品始终达到超过50%的任务成功率。此外,Scone可容纳各种初始状态的令人印象深刻的能力使其能够精确评估食物的当前状况,从而导致了令人信服的成功率。有关更多信息,请访问我们的网站。