勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
本研究的重点是通过集成区块链技术来提高电子商务供应链的透明度和信任。这在区块链中非常重要,因为有必要保护,记录,验证,验证和共享多个各方的数据,以确保透明度和信任。为了实现这一目标,我们介绍了称为基于区块链的NSGA III-GKM的先进组合技术。遗传K-均值聚类(GKM)和非主导的分类遗传算法(NSGA-III)是两种高级算法,结合了以新颖方式使用的高级区块链技术来实现这一目标。区块链系统会产生大量的复杂数据,因此确定有意义的模式和趋势很重要。NSGA III和GKM解决了区块链的这些问题。本研究使用NSGA III来解决多个目标的问题,例如提高信任,透明度和运输成本降低。通过使用NSGA,有效地确定了最佳解决方案,可以平衡这些具有挑战性的目标。同时,GKM通过微调分类为类似群集的数据点来改善分组过程。这有助于确定基于区块链的供应链数据中的特定趋势。通过结合这些方法,我们能够改善电子商务供应链中的趋势和行动机制。这些合并的方法协助公司确定有效的供应链策略,这有助于最大程度地降低风险,并能够调整不断变化的区块链系统。来自电子商务供应链的现实世界数据用于测试该方法的功效。根据调查结果,成功地展示了各种目标之间的平衡,并提供了改善区块链驱动的供应链网络的建议。总体而言,通过将区块链与NSGA III和GKM相结合,它不仅可以确保安全性和信任,而且还利用高级分析来提高透明度和运营效率。因此,它将帮助组织实现弹性有效的供应链管理。
简介 2 什么是数字化转型?2 为什么要进行数字化转型?2 数字化转型和人工智能 3 构建数字化转型战略的步骤 4 1.评估组织的数字环境 4 2.定义组织的愿景以及数字化转型的必要性 4 3.确定需要填补的空白,以实现数字化成熟 5 4.确保领导层和其他利益相关者的承诺 7 5.规划并确定需要改变的举措的优先顺序 7 6.创建路线图和计划 8 7.确保投资并投资于正确的技术 8 8.创造有利于数字化的环境 8 9.定期分析所取得的进展 9 10.根据需要进行扩展和转型9 后续步骤 10 评估您的数字化成熟度 10 实施数字化转型战略框架 10
随着各国政府越来越多地探索和投资人工智能和自动决策系统,我们需要采取措施确保这些快速发展的技术在公共服务的特殊环境中得到适当使用。在许多国家,COVID 创造了一个信任度提高的泡沫,这个泡沫可以说已经破灭了,在一个对公共机构前所未有的不信任的时代(但即使在信任度很高的时代),服务速度更快或更具成本效益是不够的。本文为政府系统(技术平台、运营、文化、治理、参与等)提出了建议,这些建议将有助于提高公众对公共机构、政策和服务的信心和信任,同时履行公共部门的特殊义务和责任。
预期价值主张应明确与支持估计影响的可用、可信证据挂钩。有多种类型的证据,无论是独立证据还是集体证据,都可以作为诊断技术有效评估分析的适当证据支持。过度依赖随机对照试验 (RCT) 会限制可以有效调查的价值影响类型。许多诊断都是在具有可比性能的观察性研究而非 RCT 中进行评估的,因此有必要考虑各种适当的证据。AdvaMedDx 确定了多种开发证据的方法,这些方法可能被认为是 RCT 的补充或替代。已经制定了一套指南作为补充,以进一步描述这种方法对适当类型证据及其与不同价值评估的相关性。
第二,我们讨论法律,技术和行为因素如何提供有关在哪种背景下使用我们的法律-XAI分类法的解释的指导。以信用评分为例,我们演示了法律如何规定可以将哪种类型的解释方法用于特定算法决策系统。我们展示了法律,计算机科学和行为原则的结合如何指导决策者,法律学者和计算机科学家为特定法律领域选择正确的解释方法。第三,我们证明了如何将我们的法律-XAI分类法应用于包括医疗补助,高等教育和自动决策在内的各个领域。我们认为,在创建解释权时,决策者应该更具体。自动化的决定通常可以用大量的解释方法来解释,决策者应指定哪些解释应必须提高决策者的政策目标。我们的法律-XAI分类法可以帮助决策者根据其政策目标确定正确的解释方法。
A. Terzopoulou,X。Wang,X.-Z.博士 Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语A. Terzopoulou,X。Wang,X.-Z.博士Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语
医疗保健对社会的重要性不能被夸大。它是一个蓬勃发展和富有成效的社区的基石,因为它可以促进和保留个人的福祉。通过预防性护理,疾病控制和及时的干预措施,医疗保健专业人员在保持人们的健康和改善生活质量方面发挥了至关重要的作用。此外,医疗服务在紧急情况下还提供了重要的支持,并确保获得必要的治疗和疗法。除了个人的好处之外,强大的医疗保健系统为整体经济增长做出了贡献,促进了公共卫生计划,并应对社会健康挑战。最终,医疗保健是一个基本的支柱,有助于为所有人创造一个有韧性,繁荣和公平的社会。
印度摘要:在数字世界的当代景观中,行业依赖人工智能技术,从根本上讲,这在根本上取决于机器学习的概念。机器学习是利用大量数据的字段,然后将这些数据馈送到称为模型的结构中。此数据“训练”该模型。丰富的数据用于训练这些模型,以使该数据具有最佳状态。但是,对这些丰富数据的依赖使我们面临着对用户隐私的重大风险,这是一个问题。它直接挑战了“被遗忘的权利”的存在。模型与训练数据的数据之间存在复杂的关系。传统数据管理系统可以轻松从数据库中删除用户信息,但是与机器学习模型相比,该方案变得非常复杂。这产生了称为机器学习的全新概念。该项目通过开发一种独立的工具和API来解决这一挑战,专门设计,以促进通过机器学习模型忘记数据。我们的目标是在机器学习技术的背景下开创一种增强用户隐私的实用方法。通过创建一个高效可靠的解决方案,我们旨在弥合数据隐私权利与机器学习模型的复杂工作之间的差距。通过这项努力,我们为数字时代的隐私,数据安全和道德AI实践的不断发展的论述做出了贡献。
随着人工智能改变公共部门的运营,政府努力将技术创新整合到连贯的系统中,以进行有效的服务提供。本文介绍了算法状态体系结构(ASA),这是一个新颖的四层框架,概念化了数字公共基础架构,数据 - 实体,算法,政府/治理的方式以及GovTech在AI-na-abled州中作为一个集成系统的相互作用。与将这些的方法视为平行发展不同,ASA将它们定位为具有特定启示关系和反馈机制的相互依赖层。通过对爱沙尼亚,新加坡,印度和英国实施的比较分析,我们演示了基础数字基础架构如何实现系统数据收集,从而为算法决策过程提供动力,最终在面向用户的服务中表现出来。我们的分析表明,成功的实施需要在所有层次上平衡发展,特别关注它们之间的集成机制。该框架通过弥合数字政府研究的先前断开的领域,确定影响实施成功的关键依赖性,并提供一种结构化方法来分析支持AI-ai-ai-abable政府系统的成熟度和发展途径。关键字:算法状态体系结构(ASA),数字公共基础设施(DPI),政策数据(DFP),算法政府 /治理(AG),Govtech,AI-NI-Spair Mappend Goildment,公共部门转型< / div> < / div>