本报告基于私人来源的数据,对专注于人工智能 (AI) 的私营公司的风险投资 (VC) 投资进行了分析和见解。这是数字经济测量和分析工作组 (MADE) 对数字经济政策委员会 (CDEP) 工作计划的贡献。本出版物是数字经济论文系列的一部分,将在 OECD i-Library 上发布,相关数据可在 OECD.AI 政策观察站 (www.oecd.ai/) 上实时获取。它由 Roland Tricot(经合组织顾问)起草,并得到了斯洛文尼亚约瑟夫斯蒂芬研究所人工智能实验室的 Besher Massri 和 Marko Grobelnik 以及经合组织的 Vincenzo Spiezia、Audrey Plonk、Sarah Box、Andrew Wyckoff、Dirk Pilat、Karine Perset 和 Luis Aranda 的意见和支持。该出版物的质量极大地得益于他们的参与。非常感谢韩国、墨西哥和俄罗斯代表的评论和建议。作者还感谢 Douglas Frantz(经合组织顾问)以及经合组织的 Louise Hatem 和 Angela Gosmann 的编辑支持。
光电学和高级材料杂志。22,编号9-10,9月至2020年10月,第1页。 518-522氟掺杂对使用喷雾热解方法沉积的SNO 2薄膜的特性的影响Youssef larbah A,*,Badis rahal A,Mohamed Adnane B A Speptormity Spectry Secardment,Algiers -CRNA -CRNA -CRNA -CRNA 02 BD。Frantz Fanon BP 399 Algiers,奥兰科学技术大学阿尔及利亚B技术系。 USTO-MB,B.P。 1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。 XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。 平均晶粒尺寸约为50 nm,随着氟的掺入而减小。 扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。 这些电影的传播率高85%。 光学差距从3.97到4EV不等。 电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>Frantz Fanon BP 399 Algiers,奥兰科学技术大学阿尔及利亚B技术系。USTO-MB,B.P。 1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。 XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。 平均晶粒尺寸约为50 nm,随着氟的掺入而减小。 扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。 这些电影的传播率高85%。 光学差距从3.97到4EV不等。 电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>USTO-MB,B.P。1505,31000 El-Mnaouer Oran,Algeria,在本文中,我们报告了通过在400°C下喷射热解沉积的未源源不断和氟掺杂的氧化锡(SNO 2:F)薄膜的结构和光学特性。XRD分析表明,所有薄膜呈现具有首选方向从(110)变为(211)的四方金红石结构。平均晶粒尺寸约为50 nm,随着氟的掺入而减小。扫描电子显微镜(SEM)分析表明,纳米颗粒的大小为78 nm。这些电影的传播率高85%。光学差距从3.97到4EV不等。电气研究表明,这些薄膜具有最低电阻层值的N型电导率,对9.Wt%F的掺杂膜的13(ω/γ)(2020年1月13日收到; 2020年10月22日接受; 2020年10月22日接受)关键词:SNO 2:SNO 2:F,SNO 2:S SNO 2,SNOO 2,喷雾,微观,选择性和电子属性 div>>
1. Vyndaqel 和 Vyndamax [包装说明书]。辉瑞公司:纽约州纽约市;2023 年 10 月。2. Kittleson MM、Maurer MS、Ambardekar AV、Bullock-Palmer RP、Chang PP、Eisen HJ、Nair AP、Nativi-Nicolau J、Ruberg FL;美国心脏协会临床心脏病学委员会心力衰竭和移植委员会。心脏淀粉样变性:不断发展的诊断和管理:美国心脏协会的科学声明。《循环》。2020 年 7 月 7 日;142(1):e7-e22。doi:10.1161/CIR.0000000000000792。电子版 2020 年 6 月 1 日。《循环》勘误表。2021 年 7 月 6 日;144(1):e10。《循环》勘误表。 2021 年 7 月 6 日;144(1):e11。PMID:32476490。3. Kittleson MM、Ruberg FL、Ambardekar AV、Brannagan TH、Cheng RK、Clarke JO、Dember LM、Frantz JG、Hershberger RE、Maurer MS、Nativi-Nicolau J、Sanchorawala V、Sheikh FH。2023 年 ACC 心脏淀粉样变性患者综合多学科护理专家共识决策路径:美国心脏病学会解决方案集监督委员会报告。J Am Coll Cardiol。2023 年 3 月 21 日;81(11):1076-1126。doi:10.1016/j.jacc.2022.11.022。2023 年 1 月 23 日电子出版。勘误表载于:J Am Coll Cardiol。 2023 年 3 月 21 日;81(11):1135。 doi:10.1016/j.jacc.2023.02.013。电话号码:36697326。
缩写:b -trcp,β-transducin重复蛋白; CBL-B,Casitas B淋巴瘤B; C-CBL,Casitas B谱系淋巴瘤; COP1,组成性的光型1; CSN5,组成型光形态发生9信号体5; DCUN1D1,有缺陷的Cullin Neddylation 1含域1;配音,去泛素化酶; FBXO38,仅F-box蛋白38; FBXW7,F-box,具有7个串联WD40重复; HRD1,HMG-COA还原酶降解蛋白1; KLHL22,Kelch喜欢家庭成员22; OTUB1,含有OTU结构域的泛素醛蛋白1; PD-1,编程死亡-1; PD-L1,编程死亡-1配体; PTM,翻译后修改; RBX1,环盒蛋白1;汤匙,斑点型poz蛋白; Stub1,stip1同源性和含有蛋白质1的u-box E; UPS,泛素蛋白酶体系统; USP7,泛素特异性蛋白酶7; USP9X,泛素特异性肽酶9,X连接; USP22,泛素特异性蛋白酶22。*通讯作者。1 Xinsi Road,Xi'an,Shaanxi 710038,中国。**通讯作者。中国北京100853的海德安,豪德路28号。***通讯作者。1 Xinsi Road,Xi'an,Shaanxi 710038,中国。电子邮件地址:hanjing.cn@163.com(J。Han),huyi301zlxb@sina.com(y. hu),yanxiaolong@fmmu.edu.edu.cn(X。yan)。在重庆医科大学的责任下进行同伴审查。1这些作者为这项工作做出了同样的贡献。
关于 EB 的诊断和分类。 J Am Acad Dermatol. 2008;58:931---50。 6. Oliveira ZN、Périgo AM、Fukumori LM 和Aoki V. 遗传性大疱性表皮松解症的免疫学映射。胸罩皮肤科。 2010;85:856---61。 7. Has C, He Y.研究技术变得简单:大疱性表皮松解症的免疫荧光抗原图谱。 J Invest Dermatol。 2016;136:e65---71。 8. Takeichi T、Liu L、Fong K、Ozoemena L、McMillan JR、Salam A 等人。全外显子组测序提高了诊断性大疱性表皮松解症实验室的突变检测能力。 Br J 皮肤病学。 2015;172:94---100。 9. Tenedini E、Artuso L、Bernardis I、Artusi V、Percesepe A、De Rosa L 等。基于扩增子的下一代测序:大疱性表皮松解症分子诊断的有效方法。 Br J 皮肤病学。 2015;173:731---8。 10. Has C、Küsel J、Reimer A、Hoffmann J、Schauer F、Zimmer A 等。靶向二代测序在大疱性表皮松解症诊断中的地位。 Acta Derm Venereol。 2018;98:437---40。 11. Vahidnezhad H、Youssefian L、Saeidian AH、Touati A、Sotoudeh S、Abiri M 等人。多基因下一代测序面板可识别患有未知亚型大疱性表皮松解症的患者的致病变异:具有预后意义的亚分类。 J Invest Dermatol。 2017;137:2649---52。 12. Lucky AW、Dagaonkar N、Lammers K、Husami A、Kissell D 和 Zhang K. 一种用于诊断大疱性表皮松解症的综合下一代测序检测方法。小儿皮肤病学。 2018;35:188---97。 13. Mariath LM、Santin JT、Frantz JA、Doriqui MJR、Kiszewski AE、Schuler-Faccini L. 巴西大疱性表皮松解症的遗传基础概述:发现新的和复发的致病变异。临床遗传学。 2019;96:189---98。 14.Yiasemides E、Walton J、Marr P、Villanueva EV、Murrell DF。透射电子显微镜与免疫荧光成像在大疱性表皮松解症诊断中的对比研究。 Am J Dermatopathol。 2006;28:387---94。 15. Saunderson RB、Vekic DA、Mallitt K、Mahon C、Robertson SJ、Wargon O. 一项回顾性队列研究,评估与免疫荧光和
1. Johnson DB、Nebhan CA、Moslehi JJ、Balko JM。免疫检查点抑制剂:毒性的长期影响。Nat Rev Clin Oncol。2022;19:254-67。2. Sullivan RJ、Weber JS。检查点抑制剂的免疫相关毒性:机制和缓解策略。Nat Rev Drug Discov。2022;21:495-508。3. Quach HT、Johnson DB、LeBoeuf NR、Zwerner JP、Dewan AK。免疫检查点抑制剂引起的皮肤不良事件。J Am Acad Dermatol。2021;85:956-66。 4. Maloney NJ、Ravi V、Cheng K、Bach DQ、Worswick S。Stevens-Johnson 综合征和检查点抑制剂引起的毒性表皮坏死松解症样反应:系统评价。Int J Dermatol。2020;59:e183-8。5. Harr T、French LE。毒性表皮坏死松解症和 Stevens-Johnson 综合征。Orphanet J Rare Dis。2010;5:39。6. Frantz R、Huang S、Are A、Motaparthi K。Stevens-Johnson 综合征和毒性表皮坏死松解症:诊断和治疗综述。Medicina (Mex)。2021;57:895。7. Antonia SJ、Gettinger S、Goldman J、Chow LQ、Juergens R、Borghaei H 等人。一线 Nivolumab(抗 PD-1;BMS-936558,ONO-4538)和 Ipilimumab 在非小细胞肺癌 (NSCLC) 转移性非小细胞肺癌中的安全性和有效性。Int J Radiat Oncol。2014;90:S32-3。8. Goldinger SM、Stieger P、Meier B、Micaletto S、Contassot E、French LE 等。抗 PD-1 治疗期间的细胞毒性皮肤药物不良反应。Clin Cancer Res。2016;22:4023-9。9. Nayar N、Briscoe K、Penas P。Ipilimumab 难治性转移性黑色素瘤患者出现与 Nivolumab 相关的毒性表皮坏死松解症样反应和严重卫星细胞坏死。J Immunother。 2016;39:149–52。 10. Pathria M、Mundi J、Trufant J。服用易普利姆玛患者出现史蒂文斯-约翰逊综合征的病例。 Int J 案例代表图像。 2016;7:300。 11. Demirtas S、Aridi LE、Acquitter M、Fleuret C、Plantin P。莱尔抗 PD1 致命进化综合征。 Ann Dermatol Vénéréologie。 2017;144:65–6。 12. Dika E、Ravaioli GM、Fanti PA、Piraccini BM、Lambertini M、Chessa MA 等。伊匹单抗治疗转移性黑色素瘤期间的皮肤不良反应:一项前瞻性研究。欧洲皮肤病学杂志。 2017;27:266–70。 13. Ichiki Y、Iwanami T、Kakizoe K、Hamatsu T、Suehiro T、Yoneda K 等。用纳武单抗治疗的晚期或术后复发非小肺癌病例分析。 J UOEH。 2017;39:291–7。 14. Ito J、Fujimoto D、Nakamura A、Nagano T、Uehara K、Imai Y 等。阿瑞吡坦用于治疗难治性纳武利尤单抗引起的瘙痒。肺癌。 2017;109:58-61。 15. Saw S,Lee HY,Ng QS。帕博利珠单抗在非黑色素瘤患者中诱发史蒂文斯-约翰逊综合征。欧洲癌症杂志。 2017;81:237–9。 16. Vivar KL, Deschaine M, Messina J, Divine JM, Rabionet A, Patel N 等.表皮程序性细胞死亡-配体 1 表达
ORCON 的最高机密。‘世界分为三类人:一小群人推动事情发生,一大群人旁观事情发生,而绝大多数人永远不知道发生了什么。’尼古拉斯·默里·巴特勒,J.P. 摩根公司巴特尔家族非常杰出。戈登·巴特尔的祖先托马斯是马萨诸塞湾殖民地的成员;他的名字于 1648 年被登记在马萨诸塞州戴德姆的名册上。他家族的男性成员毕业于名牌大学,在革命军中服役,并且是企业家。他的祖父和同名人,第一代戈登·巴特尔,是 1861 年制定新州西弗吉尼亚宪法的会议的成员 — — 并被认为对该地区废除奴隶制负有主要责任。 1876 年 亚历山大·格雷厄姆·贝尔和托马斯·沃森发明电话 戈登·巴特尔出生于 1883 年 8 月 10 日,在富裕的环境中长大,并成为工业领袖。在 20 世纪初期,大多数行业没有投资研究。如果他们投资,那也只是在进行常规测试的小型实验室里。戈登·巴特尔的愿景是找到一种方法来为工业提供高质量的研究。此外,他相信研究可以提供改善人们生活质量的方法。 1886 年 - 查尔斯·马丁·霍尔发现一种廉价的铝生产工艺。 1901 年 - 卡内基以 2.5 亿美元的价格出售了他的钢铁公司,猜猜卖给了谁?J. P.
科学可以造福社会的其他方式。1913 年,在俄亥俄州克利夫兰,五个人成立了一家公司,致力于应用相对较新的科学原理来改善金属的物理性能。由于改良钢是其主要产品,因此该公司被命名为“钢铁改良公司”。SIFCO 三年后,即 1916 年,钢铁改良公司与隔壁的“森林城机器公司”合并。森林城机器的主要制造工艺是锻造,合并为热处理公司增加了锻造能力。该公司更名为“钢铁改良和锻造公司”。(SI .F.CO.)。1917 年,美国陆军通信兵装备部在俄亥俄州代顿市的麦库克机场建立了新的飞机工程部总部,这是一战时期的实验工程设施。戈登·巴特尔资助布洛克兄弟在芝加哥建立内陆钢铁公司; 1917 年,他和 Frantz 将哥伦布钢铁厂卖给了美国轧钢厂——1948 年更名为 Armco Steel Corporation,现在是 AK Steel Holding Corporation 的一部分。然而,1918 年,他的父亲 John 去世,给 Gordon 留下了近 500 万美元的遗产。Gordon 回到俄亥俄州哥伦布市,并向所有朋友提出了成立研究实验室的想法。与此同时,他是两家钢铁公司的总裁,也是另外三家公司的董事。1923 年,他因阑尾切除术后的并发症去世,年仅 40 岁。他的实验室从未建成,但幸运的是,他留下了遗嘱!1922 年,Steel Improvement 成功锻造了 MONEL 金属。他们制造了“STILL-PLUGS”产品,这是一种用于炼油厂的零件。由于这些零件在恶劣的环境中运行,因此被大量使用。到目前为止,STILL-PLUGS 都是用一种称为 MONEL 金属的镍合金铸造的。 Steel Improvement 凭借其冶金和锻造技术成功锻造了这些部件,大大延长了它们的使用寿命。这使该公司比那些怀疑镍基合金是否可锻造的竞争对手更具优势。为“新泽西标准石油公司”(即“埃克森”)生产的样品订单非常成功,Steel Improvement 很快就开始为美国各地的炼油厂生产止回塞。1923 年第一台阴极射线管 – AT&T/贝尔实验室,JB Johnson Gordon Battelle 于 1923 年 9 月 21 日手术后去世。在他的遗嘱中,他成立了巴特尔纪念研究所,这是一家非营利组织,将开展研究以造福工业和人类,并确保科学技术得到应用。他的遗产中的钱以及他母亲 Anne Battelle 遗赠的钱创建了巴特尔纪念研究所。 1923 年 7 月 2 日——美国海军研究实验室 (NRL) 成立——华盛顿特区从 1886 年到 1923 年,俄亥俄州人开发了飞机、加法机、制瓶机、商业胶印机、汽车轮胎、自动交通信号灯和吸尘器,为几代俄亥俄州人创造了价值数十亿美元的全球市场和就业机会。沃伦·G·哈丁总统与巴特尔有什么关系?他是巴特尔家族的朋友,被选为巴特尔最初的董事会成员。董事会成员还有安妮·诺顿·巴特尔、两位实业家和一位律师。巴特尔的董事哈丁总统也于 1923 年去世,因此任命了两位新董事。 1924 联合银行公司成立于 1924 年 8 月 4 日,由荷兰鹿特丹的 Bank voor Handel en Scheepvaart NV 全资拥有。 1924 联邦-莫古尔公司由 Muzzy-Lyon(莫古尔金属)和联邦轴承和衬套合并而成,成为巴氏合金和青铜的主要供应商。 1925 1925 年,亚瑟·柯林斯首次赢得了全国赞誉,因为他与格陵兰科学考察队保持了可靠的通信。当时年仅 15 岁的他用手工制作的收音机完成了这一壮举。 巴特尔于 1925 年 3 月 27 日在哥伦布开始工作。哥伦布建造了一栋建筑,并于 1929 年夏天开业,当时有 20 名员工和