集群级别。13,14此外,还报道了对影响ssDNA-AUNP聚集的重要因素(例如温度,探针长度和粒径)的研究。15 - 17然而,尚不清楚目标ssDNA的检测灵敏度上,固定化ssDNA的密度的影响仍不清楚。在这项研究中,我们开发了一种轻松的方法来控制固定在AUNP表面上的ssDNA量,并研究了固定化ssDNA的表面密度对目标ssDNA检测敏感性的影响。在这项研究中,我们采用了一种冻结方法,通过硫醇-AU键将硫醇化的ssDNA固定在AuNP表面上。在冷冻后,主要由纯净水组成的小冰晶体,非水物种(例如Aunps,DNA和盐)集中在冰晶之间的间隙中,从而使AuNP表面上的硫醇化ssDNA快速固定。18,19注意到,由于冻结过程没有冻结过程对AUNP的大小观察到效果,因为冻结方法制造的ssDNA-unps的大小,而通过盐衰老方法是相同的。18先前已经证明,乙二醇(例如)可以通过冻结来防止银纳米颗粒聚集。20,21,例如,降低了水的蒸气和溶液的冰点,从而抑制了冰晶的形成。因此,我们假设可以使用EG来控制固定在Aunps上的ssDNA量。在这项研究中,我们第一次证明了固定在AuNP上的ssDNA量可以通过冻结方法轻松地使用EG来控制,例如,通过冻结方法来控制DNA密度在靶标SSDNA检测中的效果。
良好的制造实践。寒冷是将鱼类或鱼类制品冷却到融化冰的温度的过程。可以通过使用冰,冷藏水,海水和淡水或冷藏海水的冰浆来实现寒冷。同样,冻结是足以将整个产品温度降低到足够低的水平,以保持鱼的固有质量,并且在运输,存储和分配期间一直保持在低温,直至最终销售的时间。以适当的设备进行的冻结过程,以使最大结晶的温度范围迅速通过。除非和直到产物温度达到–18 o C(0 O F)或在热稳定后的热中心,否则不得将快速冷冻过程视为完整。
冷冻是最古老和最常用的食品保鲜方法之一。自旧石器时代和新石器时代以来,人们就一直使用冰雪来冷却食物,冷冻就被认为是一种非常有效的长期食品保鲜方法。盐和冰的冷却效果首次由化学家罗伯特·波义尔于 1662 年公开讨论,但这项技术在 16 世纪的西班牙、意大利和印度肯定已经为人所知。在维多利亚时代,使用辐射“夜间冷却”在浅湖中制造冰并在冰屋中保存冰雪是大型乡间别墅的常见做法。冰是特权阶层专用的产品,冰冻甜点非常时尚,是巨大财富的象征。在气候更温和的地方,冰雪的保存显然很困难,只有通过人工冷却,冷冻食品才得以更广泛地普及。1755 年,威廉·卡伦首次在没有任何自然冷却形式的情况下通过在低压下蒸发水来制造冰。 1834 年,雅各布·珀金斯 (Jacob Perkins) 制造了第一台使用乙醚的制冰机。在接下来的 30 年里,制冷技术迅速发展,由焦耳和开尔文等人引领,并申请了第一批与食品冷冻相关的专利。1865 年,纽约建造了第一座使用盐水进行冷却的冷藏仓库。1868 年,Anchor Line 的 Circassian 和 Strathl 号船上使用了船用冷风机
Property Values Remarks • Method pH: 5.5-6.5 Melting Point / Freezing Point: No data available Boiling Point / Boiling Range: 100 °C / 212 °F Flash Point: > 100 °C / 212 °F Evaporation Rate: 1 (Butyl acetate = 1) Flammability (solid, gas): No data available No information available Flammability Limits in Air: No information available Upper Flammability Limit: No data available Lower Flammability Limit: No数据可用蒸气压力:无数据可用的蒸气密度:无数据可用的相对密度可用:1.00溶解度(IES):在水分分配系数中可溶性:无数据可用的可用信息可用的自动签名温度:不适用的分解温度:不适用的动力学粘度:可用的信息可用信息可用信息,信息可用的信息可用信息。
Property Values Remarks • Method pH: 9.5-10.5 Melting Point / Freezing Point: No data available Boiling Point / Boiling Range: 100 °C / 212 °F Flash Point: > 100 °C / 212 °F ASTM D56 Evaporation Rate: < 1 (BuAc = 1) Flammability (solid, gas): No data available No information available Flammability Limits in Air: No information available Upper Flammability Limit: No data available Lower易燃性限制:无数据可用的蒸气压力:无数据可用的信息蒸气密度:无数据可用的相对密度可用的信息相对密度:1.001溶解度(IES):可溶于水分分配系数:无可用的数据可用的可用信息自动签名温度:不适用的分解:不适用的温度:不适用的信息可用的粒子特性:无适用的粒子特征
Property Values Remarks • Method pH: 1.2-2.2 Melting Point / Freezing Point: No data available Boiling Point / Boiling Range: 100 °C / 212 °F Flash Point: > 100 °C / 212 °F ASTM D56 Evaporation Rate: < 1 (Butyl acetate = 1) Flammability (solid, gas): No data available No information available Flammability Limits in Air: No information available Upper Flammability Limit: No data available Lower易燃性限制:无数据可用的蒸气压力:无数据可用的信息蒸气密度:无数据可用的相对密度可用的信息:1.03溶解度(IES):可溶性水分分配系数:无可用的数据可用的可用信息自动签名温度:不适用的分解:不适用的温度:没有适用的信息可用的粒子特性:不适用的粒子特征:dif
良好的生产规范。冷却是将鱼或鱼产品冷却到接近融冰温度的过程。冷却可以通过使用冰、冷冻水、海水和淡水的冰浆或冷藏海水来实现。同样,冷冻是足以将整个产品的温度降低到足以保持鱼的固有质量的水平的过程,并且在运输、储存和分销直至最终销售时一直保持这种低温。冷冻过程在适当的设备中进行,以便快速通过最大结晶温度范围。除非产品温度在热稳定后在热中心达到-18 o C(0 o F)或更低,否则速冻过程不应被视为完成。(2)冷冻/冷冻甲壳类动物包括干净的、完整的或去皮的甲壳类动物(虾/对虾、螃蟹和龙虾),它们可以是生的、冷冻的或冷冻的
使用可再生能源作为解决对化石燃料的能源依赖的解决方案需要创新的能源储存解决方案。在文献中提出的解决方案中,电热储能由使用跨临界 CO 2 循环的热泵和热机组成,水作为热能储存 (TES) 流体来储存显热,冰作为冷储存介质来储存潜热,这似乎很有前景。在本文中,使用 Aspen Plus V11 开发了该系统的稳态数学模型,并进行了验证并与文献中的结果进行了比较。然后利用参数敏感性分析研究了验证模型的性能,通过探索不同参数对多个效率指标的影响,最佳情况下实现了往返效率 (η RT ) 7.64 % 的改善。发现水轮机入口温度和热机最小压力对 η RT 改善的贡献最大,最小压力是可以通过使用具有较低冰点的冷 TES 介质进一步降低的压力。最后,评估了替代冷 TES 介质(冻结温度低于冰)对系统性能的影响。结论是,模型的 η RT 随着冻结温度的下降而下降,从 0 °C 时的 46.90 % 下降到 -20.19 °C 时的 44.90 %。因此,选择冻结温度低于冰的冷 TES 介质不会带来与模型的 η RT 相关的好处。