摘要:本文探讨了基于扑动的数字课堂应用程序的开发,该应用程序是Android和iOS设备的学生和老师的教育平台。该应用程序利用Flutter的功能在两个平台上提供无缝的用户体验。它提供了现场课程,作业,讨论板和通知等功能。本文将涵盖系统体系结构,用户界面设计以及使用扑朔迷离进行跨平台开发的好处。I.在迅速发展的教育世界中引入了介绍,对促进远程学习的数字平台的需求激增。数字课堂应用程序位于这一发展的最前沿,帮助学生和教师在传统的课堂环境之外有效地进行互动和协作。本文讨论了针对Android和iOS平台的基于扑动的数字课堂应用程序的开发,该应用程序可以主持现场课程,共享教育资源,管理作业并促进沟通。1.1问题陈述传统教育方法通常受地理和物理约束的限制。随着向在线学习的转变,至关重要的是,拥有有效,用户友好和跨平台应用程序可以支持各种教育活动。使用Flutter开发此类应用程序可以减少开发时间和成本,从而确保该应用程序无缝地到达Android和iOS用户。1.2目标•开发一个支持实时类,作业,测验和同伴交互的应用程序。II。II。•为Android和iOS用户创建具有统一接口的应用程序。•评估颤动在构建跨平台教育应用程序中的优势。系统体系结构该应用程序旨在支持可扩展性,灵活性和易用性。该应用程序由几个相互作用的组件组成,如下图所示。2.1组件•前端(移动应用程序):使用Flutter开发,它是Android和iOS的用户界面。•后端服务器:处理用户身份验证,教育材料的存储,提交分配等。•数据库:存储诸如用户配置文件,分配,成绩和课程内容之类的数据。•第三方服务:包括视频会议API(例如Zoom或Jitsi),用于直播课程和Firebase进行通知。
深度学习作为无人驾驶汽车的支柱,越来越受欢迎,本文旨在为有抱负的开发人员揭开该领域的神秘面纱。作为数据科学博客马拉松的一部分,我们将探索这项技术背后的原因,并提供成为应用深度学习工程师的途径。本文不会过于技术性或正式,所以欢迎在评论部分提问。仅在印度,每年就有超过 70 万名学生毕业,其中许多人渴望从事计算机科学开发工作。深度学习是新兴领域之一,由于其在各个领域的应用,它引起了人们的极大兴趣。然而,许多学生不确定从哪里开始或如何将精力集中在这个领域。深度学习从业者经常担心被自动化取代,但请放心,人类专业知识在一段时间内仍将是必不可少的。如果你擅长数字并对尖端技术感到兴奋,那么深度学习非常适合你。本文将深入探讨深度学习的基础知识,它主要涉及模仿人类大脑行为的神经网络 (NN)。我们还将解决常见的误解,例如需要硕士学位或就读一级大学才能在该领域取得成功。实际上,主要有两个角色:深度学习研究人员和应用深度学习工程师。前者专注于开发新算法和技术,而后者则应用现有解决方案来减少人力。本文旨在为成为一名成功的应用深度学习工程师提供全面的指南,包括必要技能和技术的概述。学习机器学习不仅仅是将算法应用于数据;它是一个从识别问题并理解其要求开始的过程。一个关键步骤是分析问题并确定是否可以将传统算法用作解决方案,从而节省能源和资源。谈到深度学习,选择合适的编程语言至关重要。Python 和 R 是流行的选择,每种语言都有自己的优势和专长。先掌握一种语言将使学习另一种语言变得更容易。学习一门新编程语言的一个常见障碍是获取有助于学习过程的优质资源。建议的方法是一次专注于一种语言,掌握其库后再学习其他语言。此外,计算机科学基础知识和数据结构的知识对于使用机器学习/深度学习算法也是必要的。这包括了解软件工程技能,例如数据结构、软件开发生命周期、Github、算法(排序、搜索和优化)。虽然仅通过视频讲座学习以获得证书很诱人,但获得有助于您成为更好的开发人员的知识至关重要。此外,在处理实际项目时,客户通常需要以服务或应用程序的形式提供解决方案,而不仅仅是机器学习模型。大多数数据科学爱好者都低估了数据结构和软件工程概念的重要性,认为它们对于 AI/ML/DL 工作不那么重要。然而,这些概念对于优化代码和满足项目期限至关重要。要成功使用 SDLC,彻底理解其概念至关重要,这是我通过大学学习和 POC(概念验证)的实践经验学到的。虽然我最初在实际项目中并没有掌握这些概念,但参与几个项目有助于澄清它们。如果您熟悉这些概念但难以在实践中应用它们,请不要担心;当您成为实际项目的一部分时,您会学到东西。对于过渡到机器学习的软件工程师来说,对数学和统计概念有扎实的理解至关重要。这些概念使分析算法并根据特定需求对其进行微调成为可能。基本知识包括梯度下降、距离度量、平均值、中位数和众数,可用于训练和推理。常见挑战:大多数人都忽视了在深入学习深度学习之前学习数学概念的重要性,认为预先实现的算法可以直接应用而无需调整。然而,我发现这些概念在使用深度学习算法时至关重要(95% 的时间);它们对于根据特定用例调整模型是必不可少的。一旦开发出机器学习解决方案,有效地呈现它就至关重要。这涉及创建非技术人员可以理解的可视化或图表,通常需要了解 Django、Flask 和 JavaScript 等 UI 技术。这些工具通过将机器学习代码与用户友好的前端集成在一起来增强开发过程。开发解决方案后,部署它需要了解 Apache 和 Wamp 等技术。鉴于项目的复杂性日益增加,尤其是在没有专门的前端和后端开发人员的小型团队或组织中,掌握这些技能是必不可少的。云计算的重要性:随着数据继续呈指数级增长,本地服务器已不再足以进行管理。据 Forbes.com 报道,采用云计算平台不仅可以简化从数据准备到模型开发的操作,还可以获得最先进的基于深度学习的解决方案。AWS 和 Azure 是专业人士的首选,Google Cloud 也值得探索。作为一名深度学习工程师,掌握这些技术至关重要 - 尽管学习其他技术也会有好处。从事云计算工作时,一个显著的挑战是同时处理多种技术。然而,对于那些有兴趣扩展技能的人来说,这绝对与深度学习工程有关。要开始使用这些技术,请使用提供的资源: - 编程语言: - 数据结构: - 机器学习数学: - 前端技术: - 云技术:本文讨论了深度学习所需的核心技能,这是机器学习的一个重要方面,涉及像人脑一样运作的复杂神经网络。深度学习使人工智能系统能够从大数据中学习和适应,做出预测并随着时间的推移改善结果。深度学习在语言处理、视觉识别、医疗保健甚至儿童发育迟缓检测方面都有广泛的应用。它对人类未来的影响是巨大的,尤其是考虑到计算能力的进步。当深度学习工程师在开发系统的平台上工作时,他们的目标是创建利用人工智能服务中类似大脑功能的程序。我们列出了 15 门最好的在线深度学习课程,供那些希望从事这一领域的人选择。学习从事深度学习职业需要奉献精神和正确的心态。许多深度学习工程师都具有共同的特质,例如团队合作能力和分析能力,这使得来自不同背景的人都能取得成功。深度学习的基本先决条件包括编程专业知识,尤其是 Python 或 R 等语言,因为它们具有灵活性和功能。统计学能力也至关重要,尤其是在数据科学和人工智能应用中,专注于数据可视化和理解数据之间的复杂关系。此外,扎实的微积分理解对于掌握机器学习算法是必要的,从而能够创建准确表示数据的模型。概率在微调深度学习模型进行预测和分析方面起着重要作用,使其成为一项必备技能。数据科学也至关重要,涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了重大发展,为个人提供了从世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习- 机器学习的数学: - 前端技术: - 云技术: 本文讨论了深度学习所需的核心技能,深度学习是机器学习的一个重要方面,涉及像人脑一样运作的复杂神经网络。深度学习使人工智能系统能够从大数据中学习和适应,做出预测并随着时间的推移改善结果。深度学习在语言处理、视觉识别、医疗保健甚至儿童发育迟缓检测方面都有广泛的应用。它对人类未来的影响是巨大的,尤其是考虑到计算能力的进步。当深度学习工程师在开发系统的平台上工作时,他们的目标是创建利用人工智能服务中类似大脑功能的程序。我们列出了 15 门最好的在线深度学习课程,供那些想要从事这一领域的人选择。学习从事深度学习职业需要奉献精神和正确的心态。许多深度学习工程师都具有共同的特质,例如团队合作技能和分析能力,这使得来自不同背景的个人都能取得成功。深度学习的基本先决条件包括编程专业知识,尤其是 Python 或 R 等语言,因为它们具有灵活性和功能。熟练掌握统计学也很重要,尤其是在数据科学和人工智能应用中,专注于数据可视化和理解数据之间的复杂关系。此外,扎实的微积分理解对于掌握机器学习算法也是必要的,从而能够创建准确表示数据的模型。概率在微调深度学习模型进行预测和分析方面起着重要作用,因此它是一项必备技能。数据科学也至关重要,它涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了巨大的发展,为个人提供了从世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习- 机器学习的数学: - 前端技术: - 云技术: 本文讨论了深度学习所需的核心技能,深度学习是机器学习的一个重要方面,涉及像人脑一样运作的复杂神经网络。深度学习使人工智能系统能够从大数据中学习和适应,做出预测并随着时间的推移改善结果。深度学习在语言处理、视觉识别、医疗保健甚至儿童发育迟缓检测方面都有广泛的应用。它对人类未来的影响是巨大的,尤其是考虑到计算能力的进步。当深度学习工程师在开发系统的平台上工作时,他们的目标是创建利用人工智能服务中类似大脑功能的程序。我们列出了 15 门最好的在线深度学习课程,供那些想要从事这一领域的人选择。学习从事深度学习职业需要奉献精神和正确的心态。许多深度学习工程师都具有共同的特质,例如团队合作技能和分析能力,这使得来自不同背景的个人都能取得成功。深度学习的基本先决条件包括编程专业知识,尤其是 Python 或 R 等语言,因为它们具有灵活性和功能。熟练掌握统计学也很重要,尤其是在数据科学和人工智能应用中,专注于数据可视化和理解数据之间的复杂关系。此外,扎实的微积分理解对于掌握机器学习算法也是必要的,从而能够创建准确表示数据的模型。概率在微调深度学习模型进行预测和分析方面起着重要作用,因此它是一项必备技能。数据科学也至关重要,它涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了巨大的发展,为个人提供了从世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习尤其是考虑到计算能力的进步。当深度学习工程师在开发系统的平台上工作时,他们的目标是创建利用人工智能服务中类似大脑功能的程序。我们列出了 15 门最好的在线深度学习课程,供那些希望从事这一领域的人学习。学习从事深度学习职业需要奉献精神和正确的心态。许多深度学习工程师都具有共同的特质,例如团队合作能力和分析能力,这使得来自不同背景的个人都能取得成功。深度学习的基本先决条件包括编程专业知识,特别是 Python 或 R 等语言,因为它们具有灵活性和功能。统计学的熟练程度也很重要,特别是在数据科学和人工智能应用中,专注于数据可视化和理解数据之间的复杂关系。此外,对微积分的扎实理解对于掌握机器学习算法是必要的,从而能够创建准确表示数据的模型。概率在微调深度学习模型进行预测和分析方面起着重要作用,使其成为一项必备技能。数据科学也至关重要,涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了巨大的发展,为个人提供了在世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习尤其是考虑到计算能力的进步。当深度学习工程师在开发系统的平台上工作时,他们的目标是创建利用人工智能服务中类似大脑功能的程序。我们列出了 15 门最好的在线深度学习课程,供那些希望从事这一领域的人学习。学习从事深度学习职业需要奉献精神和正确的心态。许多深度学习工程师都具有共同的特质,例如团队合作能力和分析能力,这使得来自不同背景的个人都能取得成功。深度学习的基本先决条件包括编程专业知识,特别是 Python 或 R 等语言,因为它们具有灵活性和功能。统计学的熟练程度也很重要,特别是在数据科学和人工智能应用中,专注于数据可视化和理解数据之间的复杂关系。此外,对微积分的扎实理解对于掌握机器学习算法是必要的,从而能够创建准确表示数据的模型。概率在微调深度学习模型进行预测和分析方面起着重要作用,使其成为一项必备技能。数据科学也至关重要,涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了巨大的发展,为个人提供了在世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了巨大的发展,为个人提供了从世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习涉及数据分析和操作以创建深度学习模型和算法。从历史上看,获取深度学习的教育资源是一项挑战,尤其是对于那些无法使用图书馆或传统交通工具的人来说。然而,互联网已经发生了巨大的发展,为个人提供了从世界任何地方学习深度学习的机会,而行业本身在创造这些机会方面发挥了重要作用。通过实践项目和研究学习深度学习
1人工智能和数据科学,1 IFET工程学院,Villupuram,India摘要:“性别和年龄检测”是基于计算机视觉的机器学习项目。 通过此数据科学项目,它基于CNN的实际应用,即卷积神经网络,该使用模型由“ Tal Hassner”和“ Gil Levi”培训的模型用于“ Adience”数据集。 随之而来的是,它使用了一些文件,例如 - 。 pb,frototxt,.pbtxt和.caffe模型文件。 这是一个非常实用的项目,您将创建一个模型,可以通过图像分析单个面部检测来检测任何人的年龄和性别。 因此,可以将这种性别分类归类为男人或女人。 此外,年龄可以分类为0-2/ 4-6/ 8-2/ 15-20/ 25-20/ 25-32/ 38-43/ 48-43/ 48-53/ 60-100。我们实现了年龄识别的性别识别和回归模型的分类模型,这将预测该项目所需的更好准确性。 年龄和性别识别技术利用各种方法,包括图像处理和机器学习算法,分析面部特征并确定一个人的年龄和性别。 虽然HTML(超文本标记语言)本身主要用于构建网页的内容,但年龄和性别识别的实现通常涉及HTML与其他技术(例如JavaScript和服务器端编程语言)的组合。 I.引言的一般年龄和性别识别代表计算机视觉和机器学习领域中的关键领域,彻底改变了我们如何与视觉数据进行交互和理解。1人工智能和数据科学,1 IFET工程学院,Villupuram,India摘要:“性别和年龄检测”是基于计算机视觉的机器学习项目。通过此数据科学项目,它基于CNN的实际应用,即卷积神经网络,该使用模型由“ Tal Hassner”和“ Gil Levi”培训的模型用于“ Adience”数据集。随之而来的是,它使用了一些文件,例如 - 。pb,frototxt,.pbtxt和.caffe模型文件。这是一个非常实用的项目,您将创建一个模型,可以通过图像分析单个面部检测来检测任何人的年龄和性别。因此,可以将这种性别分类归类为男人或女人。此外,年龄可以分类为0-2/ 4-6/ 8-2/ 15-20/ 25-20/ 25-32/ 38-43/ 48-43/ 48-53/ 60-100。我们实现了年龄识别的性别识别和回归模型的分类模型,这将预测该项目所需的更好准确性。年龄和性别识别技术利用各种方法,包括图像处理和机器学习算法,分析面部特征并确定一个人的年龄和性别。虽然HTML(超文本标记语言)本身主要用于构建网页的内容,但年龄和性别识别的实现通常涉及HTML与其他技术(例如JavaScript和服务器端编程语言)的组合。I.引言的一般年龄和性别识别代表计算机视觉和机器学习领域中的关键领域,彻底改变了我们如何与视觉数据进行交互和理解。这是一个抽象的概述,概述了HTML在年龄和性别识别的背景下的潜在用途:总而言之,HTML是在年龄和性别识别应用中开发直观且用户友好的接口的基石。它在构建内容,处理用户交互以及与后端服务的沟通方面的作用强调了其在为与这些创新技术互动的用户创造凝聚力和引人入胜的体验方面的重要性。此外,HTML支持将Web应用程序与外部服务联系起来的API(应用程序编程接口)的集成,从而可以在前端和后端组件之间进行无缝通信。关键字:数据科学,人工智能,机器学习,超文本标记语言,卷积神经网络,深度学习,深度神经网络,原型 - 预型文本文本,计算机视觉,数字python,闪电存储器映射数据库,应用程序编程,应用程序编程界面, - 层次数据格式, - 层次数据格式,caffe模块,分类,调节,调整,数据预定率,准确性,准确性,准确性,准确性,准确性。这些技术深入研究了人工智能的迷人领域,高级算法分析面部特征以推断重要的人口统计信息。年龄识别:年龄识别涉及使用机器学习模型来确定基于面部特征的个人年龄。这项技术不仅在于估计一个人的年代年龄,而且通常涉及将个人分类为预定义的年龄组或范围。随着时间的流逝,复杂的模式和面部特征的变化是这些模型的基础[1]。通常,使用卷积神经网络(CNN)从面部图像中提取复杂的细节,从而使系统能够辨别出与年龄相关的微妙提示,例如皱纹,皮肤纹理和面部轮廓。年龄识别的应用是多种多样的,从个性化内容建议到增强安全系统和特定年龄的营销策略。此外,识别系统可能会考虑到其他因素,例如头发颜色,风格和服装选择。机器学习模型在包含不同年龄段的大型数据集上进行了培训,从而使它们能够识别有助于准确年龄预测的模式和相关性。尽管该领域的进步发展,但年龄识别系统仍可能面临挑战,例如由于文化差异或个人修饰选择而导致外观变化。性别识别:计算机视觉中的性别识别是确定图像或视频中的人是男性还是女性。类似于年龄识别,性别识别在很大程度上取决于面部特征的分析。卷积神经网络播放中央
33.2 一款低于 1 µ J/级的集成思维意象与控制 SoC,适用于 VR/MR 应用,具有师生 CNN 和通用指令集架构 Zhiwei Zhong*、Yijie Wei*、Lance Christopher Go、Jie Gu 西北大学,伊利诺伊州埃文斯顿 * 同等署名作者 (ECA) 虚拟现实 (VR) 和混合现实 (MR) 系统,例如 Meta Quest 和 Apple Vision Pro,最近在消费电子产品中引起了极大的兴趣,在游戏、社交网络、劳动力援助、在线购物等元宇宙中掀起了新一波发展浪潮。AI 计算和多模块人类活动跟踪和控制方面的强大技术创新已经产生了身临其境的虚拟现实用户体验。然而,大多数现有的 VR 耳机仅依靠传统的操纵杆或基于摄像头的用户手势进行输入控制和人体跟踪,缺少一个重要的信息来源,即大脑活动。因此,人们对将脑机接口 (BMI) 整合到 VR/MR 系统中以供消费者和临床应用的兴趣日益浓厚 [1]。如图 33.2.1 所示,现有的集成 EEG 通道的 VR/MR 系统通常由 VR 耳机、16/32 通道 EEG 帽、神经记录模拟前端和用于信号分类的 PC 组成。此类系统的主要缺点包括:(1)佩戴麻烦且用户外观不佳,(2)缺乏低延迟操作的现场计算支持,(3)无法根据大脑活动进行实时思维意象控制和反馈,(4)由于 AI 分类导致的功耗高。为了克服这些挑战,这项工作引入了一种思维意象设备,该设备集成到现有的 VR 耳机中,而无需为 VR/MR 系统的思维控制 BMI 增加额外的佩戴负担。本研究的贡献包括:(1)支持 VR/MR 系统现场心智意象控制的 SoC,(2)与现有 VR 耳机无缝集成并优化 EEG 通道选择,以提高用户接受度和体验,(3)具有灵活数据流的通用指令集架构 (ISA),支持广泛的心智意象操作,(4)混淆矩阵引导的师生 CNN 方案,可在 AI 操作期间节省电量,(5)EEG 信号的稀疏性增强以降低能耗。制造了 65nm SoC 测试芯片,并在各种基于心智意象的 VR 控制上进行了现场演示。虽然先前的研究涉及基于 EEG 的癫痫检测或类似的生物医学应用 [2-6],但本研究专注于 VR/MR 环境中的新兴 BMI。得益于低功耗特性和设计的系统级优化,SoC 的数字核心在计算密集型 CNN 操作中实现了 <1μJ/类的能耗。图 33.2.2 显示了 EEG 通道选择和集成到 Meta Quest 2 VR 耳机中,在准确性和用户便利性之间进行了权衡。为了支持各种思维意象任务,8 个 EEG 通道 T3、T5、O1、O2、T6、T4、PZ、和 CZ 被选中并巧妙地融入头带以保持用户的美感。不同的心理任务会激活八个选定通道的子集,例如用于心理意象的 T3/T5/CZ/T4/T6、用于情感(例如情绪)监测的 T5/CZ 或用于稳态视觉诱发电位 (SSVEP) 的 O1/O2/PZ。通道的减少导致三个主要任务的平均准确率略有下降(从 90.4% 下降到 85.2%),但显着提高了用户体验和可用性。带有生理盐水的商用 Hydro-link 电极用于通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。多达 16 个可编程通道的 AFE 用于信号采集和数字化。 AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分或 O1/O2/PZ 用于稳态视觉诱发电位 (SSVEP)。通道数的减少导致三个主要任务的平均准确度略有下降(从 90.4% 降至 85.2%),但显著提高了用户体验和可用性。使用带有生理盐水的商用 Hydro-link 电极通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。最多 16 个可编程 AFE 通道用于信号采集和数字化。AFE 的每个通道包括一个增益为 45 至 72dB 和带宽为 0.05 至 400Hz 的两级斩波放大器、一个转折频率为 60Hz 的低通滤波器和一个工作频率为 128Hz 至 10kHz 的 8b SAR ADC。集成 AI 操作的数字核心包括 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维想象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有工作仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维想象任务。图 33.2.3 显示了专门开发的用于数据流控制、模型配置、通道选择等的通用 ISA。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有高硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统收缩阵列不同,此设计有意消除了大部分或 O1/O2/PZ 用于稳态视觉诱发电位 (SSVEP)。通道数的减少导致三个主要任务的平均准确度略有下降(从 90.4% 降至 85.2%),但显著提高了用户体验和可用性。使用带有生理盐水的商用 Hydro-link 电极通过头带上的预切孔捕获 EEG 信号。图 33.2.2 还显示了完全集成 SoC 的顶层图。最多 16 个可编程 AFE 通道用于信号采集和数字化。AFE 的每个通道包括一个增益为 45 至 72dB 和带宽为 0.05 至 400Hz 的两级斩波放大器、一个转折频率为 60Hz 的低通滤波器和一个工作频率为 128Hz 至 10kHz 的 8b SAR ADC。集成 AI 操作的数字核心包括 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维想象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有工作仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维想象任务。图 33.2.3 显示了专门开发的用于数据流控制、模型配置、通道选择等的通用 ISA。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有高硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统收缩阵列不同,此设计有意消除了大部分AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分AFE 的每个通道包括一个增益为 45 至 72 dB、带宽为 0.05 至 400 Hz 的两级斩波放大器、一个转折频率为 60 Hz 的低通滤波器和一个工作频率为 128 Hz 至 10 kHz 的 8b SAR ADC。用于集成 AI 操作的数字核心包括一个 8×10 处理单元 (PE) 阵列、控制逻辑和相关存储库。带有专门开发的 ISA 的指令存储器为芯片的操作提供全局控制,以支持一系列思维意象任务。实时分类的大脑状态和思维控制命令通过外部蓝牙模块传输到 VR 耳机,以控制 VR 场景。虽然大多数现有研究仅关注固定数据流 [4] 和 CNN 模型 [2,3],但需要高度灵活的计算架构来支持各种思维意象任务。图 33.2.3 显示了专门开发的通用 ISA,用于数据流控制、模型配置、通道选择等。128b 的超宽 ISA 命令用于监督各种计算任务,例如 IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏性设置等)也集成到 ISA 中,以便高效地调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。 CNN、FC、DFT 和 IIR 滤波操作可以通过在不同数据流中重复使用相同的 PE 阵列来执行,例如,Conv 层的权重固定,或 FC 层和 DFT 的输出固定。与使用大量流水线触发器的传统脉动阵列不同,此设计有意移除了大部分IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。可以通过在不同数据流中重用相同的 PE 阵列来专门执行 CNN、FC、DFT 和 IIR 滤波操作,例如,Conv 层的权重平稳,或 FC 层和 DFT 的输出平稳。与传统的脉动阵列不同,该设计特意移除了大部分IIR 滤波器、卷积 (Conv) 层、离散傅里叶变换 (DFT) 和全连接 (FC) 层,具有很高的硬件效率。为了支持不断变化的 AI 模型,每个子任务的配置(例如内核数量、层数、分支目标地址 (BTA)、稀疏度设置等)也集成到 ISA 中,以便高效调度和执行不同的任务。图 33.2.3 还显示了数字神经处理器的详细架构。8×10 PE 阵列可以灵活地按行或列打开或关闭。可以通过在不同数据流中重用相同的 PE 阵列来专门执行 CNN、FC、DFT 和 IIR 滤波操作,例如,Conv 层的权重平稳,或 FC 层和 DFT 的输出平稳。与传统的脉动阵列不同,该设计特意移除了大部分
