非纤维甜味剂(NNS),非热甜味设备,已被广泛商业化以减少糖消耗。这种意图与健康益处相关联,尽管报告与这些替代品与非传染性疾病的消费相关。缺乏对这些相互作用的更广泛含义(例如对寿命)的更广泛含义的研究,例如缺乏研究。这项研究的目的是比较三个最近经FDA批准的NNS-Acesulfame-Potassium(ACE-K),Stevia和Monk Fruit的影响,对Drosophila Melanogaster的生存,这是一种寿命研究的模型,用于寿命研究,以发现对人类寿命的可能影响,并进一步影响了人类的使用,并具有对他们的使用,以及他们的用途。可以假设,如果将D. melanogaster喂食这三个NN,则用ACE-K喂养的人将具有最低的生存率,因为ACE-K与微生物失调有关,这与寿命降低有关。将15个男性和女性同步蝇分配给含有甜味剂的小瓶中,并以蔗糖作为对照为基础饮食。幸存者每三到四天记录32天。每种饮食的存活率显着低于对照,并且使用ACE-K,χ2(9,n = 240)= 244.2,p ﹤.00001最明显。试验期一半(第15天)之间的饮食之间的生存也有显着差异,χ2(3,n = 240)= 78.3,p ﹤.00001。11葡萄糖控制,胰岛素反应和具有长期健康影响的代谢受到饮食选择的严重影响。ace-k对D. melanogaster的寿命产生了不利影响,这表明这种甜味剂在人类中的潜在并行作用。引言不健康的饮食是美国发病率的主要危险因素,在2017年,国际上有1100万人死亡是营养因素不良的结果,例如食用热浓密的食物。12,例如,糖消耗的流行率与代谢综合征的发展,包括2型糖尿病,肥胖,高血压和心血管疾病有关。19糖的摄入还可能通过产生炎症性细胞因子而导致慢性炎症,这可以进一步增加对非传染性疾病的敏感性。3在2017 - 2018年,美国人平均每天消耗17茶匙糖,超过了世界卫生组织提供的最大摄入量建议。19
X.建议阅读Bartholomew DP,Paull RE和Rohrbach KG。2002。菠萝:植物学,生产和用途。CAB International。Bose TK,Mitra SK和Sanyal D.2002。印度的果实 - 热带和亚热带。3rdEdn。 naya udyog,加尔各答。 Dhillon WS。 2013。 印度的水果生产。 Narendra Publ。 House,新德里。 Iyer CPA和Kurian RM。 2006。 热带水果中的高密度种植:原理和实践。 IBDC Publishers,新德里。 litz re。 2009。 芒果:植物学,生产和用途。 CAB International。 Madhawa Rao VN。 2013。 香蕉。 ICAR,新德里。 Midmore D. 2015。 热带园艺的原则。 CAB International。 Mitra SK和Sanyal D.2013。 Guava,ICAR,新德里。 Morton JF。 2013。 温暖气候的果实。 Echo Point Book Media,美国。 Nakasome Hy和Paull Re。 1998。 热带水果。 CAB International。 Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。印度的果实 - 热带和亚热带。3rdEdn。naya udyog,加尔各答。Dhillon WS。2013。印度的水果生产。Narendra Publ。 House,新德里。 Iyer CPA和Kurian RM。 2006。 热带水果中的高密度种植:原理和实践。 IBDC Publishers,新德里。 litz re。 2009。 芒果:植物学,生产和用途。 CAB International。 Madhawa Rao VN。 2013。 香蕉。 ICAR,新德里。 Midmore D. 2015。 热带园艺的原则。 CAB International。 Mitra SK和Sanyal D.2013。 Guava,ICAR,新德里。 Morton JF。 2013。 温暖气候的果实。 Echo Point Book Media,美国。 Nakasome Hy和Paull Re。 1998。 热带水果。 CAB International。 Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。Narendra Publ。House,新德里。 Iyer CPA和Kurian RM。 2006。 热带水果中的高密度种植:原理和实践。 IBDC Publishers,新德里。 litz re。 2009。 芒果:植物学,生产和用途。 CAB International。 Madhawa Rao VN。 2013。 香蕉。 ICAR,新德里。 Midmore D. 2015。 热带园艺的原则。 CAB International。 Mitra SK和Sanyal D.2013。 Guava,ICAR,新德里。 Morton JF。 2013。 温暖气候的果实。 Echo Point Book Media,美国。 Nakasome Hy和Paull Re。 1998。 热带水果。 CAB International。 Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。House,新德里。Iyer CPA和Kurian RM。2006。热带水果中的高密度种植:原理和实践。IBDC Publishers,新德里。 litz re。 2009。 芒果:植物学,生产和用途。 CAB International。 Madhawa Rao VN。 2013。 香蕉。 ICAR,新德里。 Midmore D. 2015。 热带园艺的原则。 CAB International。 Mitra SK和Sanyal D.2013。 Guava,ICAR,新德里。 Morton JF。 2013。 温暖气候的果实。 Echo Point Book Media,美国。 Nakasome Hy和Paull Re。 1998。 热带水果。 CAB International。 Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。IBDC Publishers,新德里。litz re。2009。芒果:植物学,生产和用途。CAB International。Madhawa Rao VN。2013。香蕉。ICAR,新德里。 Midmore D. 2015。 热带园艺的原则。 CAB International。 Mitra SK和Sanyal D.2013。 Guava,ICAR,新德里。 Morton JF。 2013。 温暖气候的果实。 Echo Point Book Media,美国。 Nakasome Hy和Paull Re。 1998。 热带水果。 CAB International。 Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。ICAR,新德里。Midmore D. 2015。热带园艺的原则。CAB International。Mitra SK和Sanyal D.2013。Guava,ICAR,新德里。 Morton JF。 2013。 温暖气候的果实。 Echo Point Book Media,美国。 Nakasome Hy和Paull Re。 1998。 热带水果。 CAB International。 Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。Guava,ICAR,新德里。Morton JF。2013。温暖气候的果实。Echo Point Book Media,美国。Nakasome Hy和Paull Re。1998。热带水果。CAB International。Paull RE和Duarte O. 2011。 热带水果(卷 1)。 CAB International。 Rani S,Sharma A和Wali VK。 2018。 瓜瓦(瓜贾瓦psidium l.)。 星际,新德里。 Robinson JC和SaúcoVG。 2010。 香蕉和车前草。 CAB International。 sandhu s和gill bs。 2013。 NIPA,新德里。Paull RE和Duarte O.2011。热带水果(卷1)。CAB International。Rani S,Sharma A和Wali VK。2018。瓜瓦(瓜贾瓦psidium l.)。星际,新德里。Robinson JC和SaúcoVG。2010。香蕉和车前草。CAB International。sandhu s和gill bs。2013。NIPA,新德里。NIPA,新德里。水果作物的生理疾病。Schaffer B,Wolstenholme BN和Whiery Aw。2013。鳄梨:植物学,生产和用途。CAB International。Sharma KK和Singh NP。2011。土壤和果园管理。Daya出版社,新德里。 Valavi SG,Peter KV和Thottappilly G.2011。 菠萝蜜。 Stadium Press,美国。 I. 课程标题:亚热带和温带水果生产II。 课程代码:FSC 502 III。 信用小时:(2+1)iv。 为什么要这门课程? 印度的农业气候多样性促进了从热带到亚热带再到温带水果和坚果的广泛的水果。 为了强调其生态特异性,季节性变化和相关的文化实践,该课程专门为亚热带和温带水果设计。Daya出版社,新德里。Valavi SG,Peter KV和Thottappilly G.2011。菠萝蜜。Stadium Press,美国。 I. 课程标题:亚热带和温带水果生产II。 课程代码:FSC 502 III。 信用小时:(2+1)iv。 为什么要这门课程? 印度的农业气候多样性促进了从热带到亚热带再到温带水果和坚果的广泛的水果。 为了强调其生态特异性,季节性变化和相关的文化实践,该课程专门为亚热带和温带水果设计。Stadium Press,美国。I.课程标题:亚热带和温带水果生产II。课程代码:FSC 502 III。信用小时:(2+1)iv。为什么要这门课程?印度的农业气候多样性促进了从热带到亚热带再到温带水果和坚果的广泛的水果。为了强调其生态特异性,季节性变化和相关的文化实践,该课程专门为亚热带和温带水果设计。
摘要角豆(Ceratonia Siliqua L.)是地中海原产的植物,是豆科植物家族的成员,其水果称为豆荚。豆荚(纸浆)的肉非常丰富,而种子的蛋白质含量很高。POD也是矿物质(例如钾,钙和磷)的良好来源。它富含多酚和抗氧化剂。由于其营养成分,它适合改善人类的福祉。本文回顾了蝗虫豆水果的化学组成及其对人类健康的生物学作用。了解蝗虫水果在其作为抗糖尿病药物的潜力方面的传统用途,鉴于近期有关其药理特性的科学研究,很重要。该研究重点介绍体内和体外抗血糖研究,以及这种天然产品在食品配方奶粉和强化中的营养特征和潜在食品应用。基于其化学和药理特性,据信该物种具有Ben E层预防和治疗作用,尤其是在高血糖中。研究人员可以从不同的角色分数中提取和分离生物活性化合物,以开发用于食品和制药行业的药品和功能性食品。
摘要:番茄果实在贮藏期间极易受到主要病原菌灰葡萄孢(B. cinerea)的侵染。最近的研究表明,自噬在植物防御生物和非生物胁迫中至关重要。自噬相关基因5(ATG5)在自噬体的完成和成熟中起关键作用,并被灰葡萄孢菌快速诱导,但ATG5在番茄采后果实抗灰葡萄孢菌中的潜在机制尚不清楚。为了阐明SlATG5在番茄果实抗灰葡萄孢菌中的作用,本研究采用CRISPR/Cas9介导的SlATG5敲除技术。结果表明,slatg5突变体对灰葡萄孢菌的感染更加敏感,病害症状更加严重,抗病酶几丁质酶(CHI)、β-1,3-葡聚糖酶(GLU)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)等活性降低。此外,研究还观察到接种灰葡萄孢菌后,slatg5突变体中水杨酸(SA)信号相关基因SlPR1、SlEDS1、SlPAD4、SlNPR1的相对表达量高于WT,而茉莉酸(JA)信号相关基因SlLoxD和SlMYC2的相对表达量低于WT。这些结果表明,SlATG5 通过抑制 SA 信号通路和激活 JA 信号通路正向调控番茄果实对灰霉病菌的抗性反应。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
蔓越莓水果腐烂(CFR)是一种主要的疾病复合体,显着影响蔓越莓作物,导致大量产量损失。在过去十年中,CFR越来越有问题,尤其是在高产和新品种中,据报道损失范围从50%到100%。此外,蔓越莓行业还面临着对使用广谱杀菌剂(例如Chlorothalonil和Mancozeb)的限制,因此需要探索替代管理策略。这项研究于2021年至2024年在马萨诸塞大学 - 阿默斯特蔓越莓站进行,评估了Frac组7、9和12的新型杀菌剂。单独测试并与硫代蛋白(FRAC 11)结合了活性成分 - 苯并叶二氟,pydi lumetofen,cyprodinil和流胞菌。这些杀菌剂在降低CFR发病率和提高产量方面的效率在蔓越莓品种“ Demoranville”,“ Ben Lear”和“ Stevens”和“ Stevens”上评估,并在Bloom早期和晚期阶段进行了应用。在2021、2023和2024中观察到果腐发生率和产量的显着差异。处理含有Pydi umetofen,pydi limetofen&fludioxonil和Benzovindi Floupyr的处理,当与硫代蛋白结合使用时,始终导致较低的腐烂率和较高的产率。含有cyprodinil&fludioxonil加上阿佐昔霉素的处理,仅在2021年进行了测试,也导致腐烂的发病率和较高的产率。这些发现突出了FRAC组7、9和12的新型杀菌剂的潜力,作为CFR管理的有效替代方法。他们的使用可以使CFR管理工具包多样化,减轻杀菌剂的耐药性并减少环境影响,从而解决了增加杀菌剂法规所带来的挑战。
为了提高水果和蔬菜行业的可追溯性效率和安全性,本文提出了一种基于多链区块链技术的优化模型。首先,对水果和蔬菜行业的供应链信息进行了分析,该信息的可追溯性代码和产品信息来自供应链的各个阶段。接下来,基于区块链技术建立了可信赖的可追溯性优化模型。最后,使用HyperLeDger Fabric实现了VFSC的信息可追溯性系统,并提出了改进的Kafka负载平衡算法来提高消息传输效率。仿真结果表明,当数据记录数量超过1000时,多链可追溯性模型就查询效率而言优于传统的单链区块链模型。在区块链上部署了10000个数据记录后,与传统的单链模型相比,多链模型的效率提高了90%以上。
水果形状是西瓜的重要特征。以及具有不同果实形状的西瓜的根际和内生微生物的组成也不清楚。分析了为了阐明西瓜水果形成的生物学机制,分析了椭圆形(OW)和西部西瓜(CW)之间的根际和内生微生物群落组成。结果表明,除根际细菌丰富度(p <0.05)外,根际和内生微生物(细菌和乐趣)多样性在OW和CW之间具有统计学意义(p> 0.05)。然而,内生微生物(细菌和真菌)组成显着差异。首先,芽孢杆菌,杜鹃花,cupriamonas和devosia是圆形西瓜(CW)的橄榄球中独特的土壤多元型细菌属。相比之下,Nocardioides,ensifer和saccharomonospora是椭圆形西瓜根际(OW)的根际的特殊土壤主要细菌属。同时,头孢菌,新杂质孢子虫,菲拉斯尼普尔和丘疹是圆形西瓜(CW)的根茎中独特的土壤主要真菌属;相比之下,Acronium,cladosporium,Cryptocococococococococococococuseae,Sodiomyces,Microascus,Conocybe,Sporidiobolus和Acromonium是卵形水甲基(OW)的根茎中独特的土壤主导的真菌属。所有上述结果表明,具有不同果皮形状的西瓜精确地募集了根茎和茎中的各种微生物。Additionally, Lechevalieria , Pseudorhodoferax , Pseudomonas , Massili a, Flavo- bacterium , Aeromicrobium , Stenotrophomonas , Pseudonocardia , Novosphingobium , Melittangium , and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW;相比之下,falsirhodobacter,kocuria和kineosporia是OW茎中的特殊内向属属。此外,lectera和fusarium是CW茎中独特的主导性内生真菌属。相比之下,仅尾孢子是OW茎中的特殊主导性内生真菌属。同时,可以推测不同根磷和内生微生物的富集与西瓜水果形状有关。
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。
塔玛拉菠萝蜜(Artocarpus tamaran Becc.)是桑科菠萝蜜属的一种,该属包含 74 种植物(POWO, 2024 )。该树种树高可达 45 米,树干直径可达 1 米,板根可高达 3 米(Kochummen, 2000 )。该物种是婆罗洲的特有物种,分布在沙捞越、沙巴、加里曼丹和文莱达鲁萨兰国,具体分布在低地至丘陵混合龙脑香科森林、河边、砂岩、粘土和冲积基质上(POWO, 2024;Jarrett, 1959 )。它也曾在海拔 20 米至 1800 米的原始或古老的次生林和砍伐林中发现(Jarrett, 1959 )。根据国际自然保护联盟 (IUCN) 的红色名录分类,Artocarpus tamaran 被列为易危 A2c(根据国际自然保护联盟的红色名录分类)( IUCN, 2024 )。该物种因栖息地丧失而濒临灭绝,栖息地已被改造成人工林、砍伐、烧毁和气候影响,例如在沙巴、砂拉越和加里曼丹( IUCN, 2024 ; POWO, 2024 )。该物种的树皮可用于生产纤维材料,用于生产布料和帽子( Kulip, 2003 ; Fern2014 )、新鲜水果和煮熟或烘烤后的可食用种子( Lim, 2012 )。该树干在当地术语中被称为“ terap ”,在建筑方面具有潜在的应用价值( Kochummen,2000 年)。该树种的木材价格为 22.90 美元/立方米