非纤维甜味剂(NNS),非热甜味设备,已被广泛商业化以减少糖消耗。这种意图与健康益处相关联,尽管报告与这些替代品与非传染性疾病的消费相关。缺乏对这些相互作用的更广泛含义(例如对寿命)的更广泛含义的研究,例如缺乏研究。这项研究的目的是比较三个最近经FDA批准的NNS-Acesulfame-Potassium(ACE-K),Stevia和Monk Fruit的影响,对Drosophila Melanogaster的生存,这是一种寿命研究的模型,用于寿命研究,以发现对人类寿命的可能影响,并进一步影响了人类的使用,并具有对他们的使用,以及他们的用途。可以假设,如果将D. melanogaster喂食这三个NN,则用ACE-K喂养的人将具有最低的生存率,因为ACE-K与微生物失调有关,这与寿命降低有关。将15个男性和女性同步蝇分配给含有甜味剂的小瓶中,并以蔗糖作为对照为基础饮食。幸存者每三到四天记录32天。每种饮食的存活率显着低于对照,并且使用ACE-K,χ2(9,n = 240)= 244.2,p ﹤.00001最明显。试验期一半(第15天)之间的饮食之间的生存也有显着差异,χ2(3,n = 240)= 78.3,p ﹤.00001。11葡萄糖控制,胰岛素反应和具有长期健康影响的代谢受到饮食选择的严重影响。ace-k对D. melanogaster的寿命产生了不利影响,这表明这种甜味剂在人类中的潜在并行作用。引言不健康的饮食是美国发病率的主要危险因素,在2017年,国际上有1100万人死亡是营养因素不良的结果,例如食用热浓密的食物。12,例如,糖消耗的流行率与代谢综合征的发展,包括2型糖尿病,肥胖,高血压和心血管疾病有关。19糖的摄入还可能通过产生炎症性细胞因子而导致慢性炎症,这可以进一步增加对非传染性疾病的敏感性。3在2017 - 2018年,美国人平均每天消耗17茶匙糖,超过了世界卫生组织提供的最大摄入量建议。19
近年来,国内人口股息逐渐消失,劳动力短缺问题已成为一种瓶颈,限制了农业发展,尤其是劳动密集型行业的发展。选择机器人技术已从前瞻性研究变为实际需求。以计算机图像处理技术,工业机器人技术和人工智能技术代表的高和新技术逐渐渗透到农业领域,采摘机器人的研究和开发已经进入了一个快速发展的时期。目前,国内外的许多企业都在开发水果和蔬菜采摘机器人,例如日本松下,美国在美国收获Croo机器人,以色列的Ffrobotics等。农业采摘机器人的工作环境非常复杂,采摘机器人需要从混乱的背景中找到随机分布的水果和蔬菜,包括分支和叶子,天空和其他干扰[1]。解决此问题的关键是将机器视觉系统引入采摘机器人,以使拾取机器人具有很高的识别率和定位准确性,并在非结构化的环境中实现自动导航。从搜索,扫描,识别,定位到最终效应器控制和操作中实现,并最终实现农作物的自动收获。例如,智能农业采摘平台
摘要:虽然食品市场和食品生产连锁店正在经历指数增长,但全球对食品安全的关注正在稳步增长。这对于即食产品(例如新鲜的沙拉和水果)尤其至关重要,因为这些物品在没有事先热处理的情况下被原始食用,因此很频繁地存在致病性微生物。此外,许多与这些食物相关的食源性疾病的研究通常会忽略最初污染源的传播联系。应全面地进行预防和控制食源性病原体的传播,涉及农业生产,加工,运输,粮食生产,并扩展到最终消费,同时采用一种健康的观点。在这种情况下,我们的目标是汇编有关与微生物污染相关的挑战的可用信息,这些挑战是在微生物和蔬菜中的微生物污染。这包括大量报告的暴发,特定的细菌菌株以及整个生产链中的相关统计数据。我们解决了每个阶段污染的来源,以及与食物操纵和消毒有关的问题。此外,我们还提供了潜在的解决方案,以促进新鲜切割水果和蔬菜的更健康方法。这些信息对于研究人员和食品生产商都很有价值,尤其是那些致力于确保食品安全和质量的信息。
1兽医生物医学和食品卫生主席,爱沙尼亚兽医科学研究所,爱沙尼亚兽医科学研究所,克雷兹瓦尔迪56/3,51006 tartu,爱沙尼亚塔尔图; mihkel.maesaar@emu.ee(M.M.); tonu.pyssa@emu.ee(T.P.); dea.anton@emu.ee(D.A.); terje.elias@emu.ee(T.E.); salli.jortikka@emu.ee(S.J.); kadrin.meremae@emu.ee(K.M.)2 Polli园艺研究中心,爱沙尼亚2,69108爱沙尼亚Polli,爱沙尼亚2,69108农业与环境科学研究所园艺主席; reelika.ratsep@emu.ee 3食品科学技术主席,爱沙尼亚生命科学兽医和动物科学研究所,克雷兹瓦尔迪56/5,51006 tartu,爱沙尼亚塔尔图; merilin.parna@emu.ee(M.P。); marek.tepper@emu.ee(M.T。); kristi.kerner@emu.ee(K.K.)4药学生物科学系,赫尔辛基大学药学学院,Viikinkaari 5E,P.O。框56,FI-00014赫尔辛基,芬兰; karmen.kapp@helsinki。fin *通信:mati.roasto@emu.ee;电话。: +372-7313-433
nuvisan已经在药物发现领域与拜耳药物在战略上进行了战略性合作,已经三年了。在2023年5月底,拜耳和努维森举行了一个科学论坛,旨在庆祝成就,讨论未来的科学机会,并加强战略伙伴关系和互动知识交流。将Nuvisan的治疗和药物发现卓越与拜耳的专业知识相结合,在众多里程碑的药物发现和成就方面取得了重大进展。nuvisan已支持拜耳的管道中的近300个单独的项目,涵盖了从想法生成到自合作开始的临床前候选人的早期药物发现的完整价值链。基因编辑和细胞治疗平台的发展以及下一代的测序功能就是这些成就的例子。通过协作的一个项目之一是发现了二酰基甘油激酶的高度选择性,口服的抑制剂,该糖尿病激酶显示出独特的结合模式和用于癌症免疫疗法的良好DMPK概况。结果是在美国癌症研究协会2023:https://aacrjournals.org/cancerres/cancerres/article/83/7_supplement/nd04/727035/727035/abstract-nd04-bay-nd04-bay-2965501--2965501-a-highly-selactive sercection and the wherean whoreS serpimersion and the soprimations warers warers' Nuvisan ICB GmbH的董事总经理兼首席运营官Fanghaenel。'建立在头三年的成功基础上,我们研究了我们与极大乐观主义的合作的未来''。我们的合作将继续进步。完成了三年的合作,我们将战略伙伴关系重视科学进步,目的是推动科学界限并影响患者的生活。有关Bayer-Nuvisan合作伙伴关系的更多信息:https://www.nuvisan.com/files/files/pdf/nuvisan-press-relse-nuvisan-nuvisan-starts-tharts-ther-the-innovation-the-innovation-campus-campus-berlin.pdf有关更多信息,请给我们发送更多信息,请发送电子邮件至hello@nuvisan.com或访问wwwwwwww.nuvisan.com。
FFED程序是一个具有丰富历史的复杂程序。在国际上,在2022财年,阿菲斯(Aphis)通过其合作者Moscamed,平均每周产生10亿无菌的地中海水果果蝇(MEDFLIES),以减轻从墨西哥和危地马拉的北向运动,并在加利福尼亚和Florida的高风险地区释放。阿菲斯(Aphis)继续为墨西哥的合作者提供帮助,通过为墨西哥恰帕斯(Chiapas)释放的额外生产提供了额外的生产。在国内,Aphis及其合作者每周在加利福尼亚释放1.2亿次无菌药物,在2022财年在佛罗里达州每周释放8000万个无菌药物。要在德克萨斯州与墨西哥果蝇(Mexfly)入侵,危地马拉和德克萨斯州的Aphis饲养设施的入侵产生了90亿无菌的Mexflies,以在德克萨斯州和墨西哥释放。在纽约州,阿菲斯(Aphis)与樱桃生产商合作,简化了监管措施,允许樱桃从欧洲樱桃果蝇隔离区移出。
1 西班牙穆尔西亚,埃斯皮纳多大学园区,CEBAS-CSIC(安全教育与应用生物学中心-高等科学技术研究委员会)植物育种系水果生物技术组,E-30100; mmartin@cebas.csic(MM-V.); cperez@cebas.csic.es (CP-C.); nalbur@cebas.csic.es (NA) 2 伊朗设拉子大学农学院园艺科学系,设拉子 7144165186; sama_rahimi@yahoo.com (社交媒体链接) smemahdavi@gmail.com (SMEM) 3 水果育种组,植物育种系,CEBAS-CSIC(教育、应用生物学和安全中心-高等科学技术研究委员会),埃斯皮纳多大学校区,E-30100 穆尔西亚,西班牙; gortuno@cebas.csic.es(GO-H.); jasalazar@cebas.csic.es (JAS) 4 匈牙利农业与生命科学大学水果种植研究中心,匈牙利布达佩斯 1223; bujdoso.geza@uni-mate.hu * 通信地址:pmartinez@cebas.csic.es;电话:+34-968-396-200 † 这些作者对这项工作做出了同等贡献。
摘要。引入分子标志物已导致水果作物的遗传多样性变化。它们对于多种学科至关重要,例如分类法,基因映射,系统发育分析和疾病抗性评估。这项广泛的研究着眼于各种分子标记,包括AFLP,RAPD,SSRS,SCOT和SNP,以表征水果作物基因组。我们研究了它们如何有助于我们对疾病抗病性,遗传多样性和进化论,在多种果实作物中的动态,例如坚果和热带,亚热带和温带水果。繁殖者现在可以创建具有改善性状,更快的繁殖时间表和更好遗传资源保护的新品种。他们使进行自定义的遗传分析并更深入地了解农业以外的其他领域的遗传学和进化是可行的。从水果作物,保护计划以及更大的科学和医学领域中遗传资源的可持续使用都受到这种历史观点的影响。