本研究提供了一个基于分散区块链的可追溯性系统,该系统允许将物联网设备从生产者连续整合到最终用户。这项研究开发了一个“供应商 - 消费者网络”,这是一种假设的端到端水果可食用性计划,以帮助实施。目标是构建一个分布式分类帐,所有网络成员都可以访问,从而产生更多的开放性。此外,试图为农民和营养素构建基于区块链的可追溯性,以减少损失并防止果实浪费。除此之外,它还为农民使用了基于区块链的供应链管理。除此之外,还利用了专家审查和农民验证。基于区块链的可追溯性对农民代表了最终的痕迹,并探索在腐烂的水果之前向卖方派遣的最佳方法。这项研究有助于对水果供应链管理的学术理解。此外,为家庭提供包容性的想法并减少水果浪费。找到减少水果供应链的方法可以是通过追踪和分发适当的水果供应链管理的有效方法。
基于文章的理解,问答 教师指示: 让学生阅读在线科学新闻文章“ 科学家们比以往任何时候都更详细地绘制了昆虫大脑图谱 ”,并让他们回答以下问题。 文章的一个版本“精致的果蝇大脑细节”出现在 2023 年 4 月 22 日的《科学新闻》上。 1. 什么是神经元,什么是突触? 神经元是神经细胞,突触是神经元之间的连接。 2. 用你自己的话解释神经科学家 Marta Zlatic 和她的同事取得了什么成就。 神经科学家 Marta Zlatic 和她的同事绘制了果蝇幼虫大脑中每个神经元及其连接的位置。 3. 研究人员使用什么方法进行研究? 这个研究项目花了多长时间? 科学家们使用电子显微镜拍摄的图像来寻找神经元,然后将图像放在一起来追踪神经元。利用从图像中收集到的信息,科学家们能够创建神经元的 3D 版本。这项工作耗时 12 年。 4. 研究人员在果蝇幼虫中绘制了多少个神经元和突触?您认为突触比神经元多意味着什么? 研究人员绘制了 3,000 个神经元和大约 550,000 个突触。我认为突触比神经元多表明单个神经元可以连接到许多神经细胞,而不仅仅是连接到另一个神经元。 5. 可视化生命系统很困难。科学家们如何展示他们的发现,使他们的发现更容易理解? 科学家使用色彩鲜艳的球体来描绘神经细胞,并使用明亮的细长尾巴来显示发送和接收信号的神经细胞的分支。 6. 为什么科学家在他们的神经元研究中使用果蝇幼虫而不是成年果蝇?使用果蝇幼虫是因为它们的大脑比成年果蝇小,这加快了数据收集速度。 7. 许多科学家在研究中使用果蝇。你认为科学家为什么认为果蝇是研究的良好模型生物?果蝇在 Zlatic 的研究中有何用处?
脱氧核糖核酸或DNA是一种双螺旋化合物,大多数人体都包含在细胞核的所有染色体中。DNA是遗传密码,该DNA的某些部分称为基因,这些基因传递了用于制造蛋白质的信息,这就是构成您的性状的原因。现在,核糖核酸(RNA)基本上是单链DNA,并且有3种不同类型的DNA都用于读取DNA。它从RNA聚合酶开始,该聚合酶沿着DNA的链移动,并使用核中剩余的游离核苷酸创建信使RNA,这是转录中的这一过程。在DNA核苷酸中成对称为碱基对;腺嘌呤与胸腺嘧啶,鸟嘌呤与胞嘧啶。当RNA聚合酶读取DNA时,它将其分为一半(打破碱基对),并添加新的,相应的核苷酸,对于胞嘧啶,它会添加鸟嘌呤,对于鸟嘌呤,它会添加胞嘧啶,为胸腺氨酸添加腺嘌呤,添加腺嘌呤,最后添加腺嘌呤,以添加Uracine。uracil是一种新化合物,用于构建RNA,但是DNA不包括它,就像RNA不包含胸腺素一样,换句话说,它们相互替代。所有这些后,使信使RNA准备转变为蛋白质,它必须从细胞中的细胞核和核糖体扫描它的细胞质中传播。在核糖体中,有称为转移RNA分子的分子,一旦读取了信使RNA,一次3个核苷酸,这些分子以链的形式释放氨基酸。这条氨基酸形成了复杂的形状,形成蛋白质,从而使其具有某些生物特征。
1研究生,农业,林业和生物库(园艺科学与生物技术),首尔国立大学,首尔08826,韩国2研究员,保护园艺研究所,国立园艺研究所,园艺和海草科学研究所,农村发展管理局,农村52054,韩国林业,森林,林业,林业,林业,林业,林业,部门,机构,机构。 (园艺科学与生物技术),首尔国立大学,首尔08826,韩国4韩国农业与生命科学研究所兼职高级研究员,首尔国立大学,首尔08826,韩国
在价值链中,将原材料转换为最终消耗,因为它在链条中移动并增加价值。价值链中的利益相关者包括输入供应商,生产者,加工者,分销商,消费者,政府组织和非政府组织,监管机构,物流公司和功能组织。输入供应商为食品生产过程提供原材料。生产者参与了该领域的商品的增长和生产。处理器参与处理,制造和营销。分销商包括批发商和零售商,消费者参与了产品的购物和消费。政府和非政府组织制定了粮食可持续性和安全的政策和计划。监管机构参与监视和调节。物流公司参与移动和存储材料,金融组织参与向实体提供资金。因此,应将食物供应链视为价值链系统。
虽然抗生素仍然是治疗微生物感染的主要基础,但负责社区或医院获得感染的微生物正在不断突变并发展出对最佳和最有效的抗生素的抗性[1,2]。微生物耐药性的由此产生的负担包括财务损失,由于治疗失败而导致的延长住院,慢性疾病(癌症和糖尿病等)的风险增加等。),生产率降低和死亡率提高[3]。微生物多抗耐药性和新传染病药物的出现因产品开发管道中有希望的化合物数量少而恶化。因此,迫切需要具有针对抗生素耐药性的显着活性的新型和活性抗菌化合物,或者是针对该疾病的抗生素的补充[4-6]。植物衍生的化合物,因为它们的化学多样性在治疗和预防感染中都起着重要作用[7,8]。这些
(sub)结构,圆形和正方形通常按照传说中的顺序组织(顶 /下,左 /右)。链接到每个(子)结构的特定功能和功能障碍仅在彩色框中列出,仅用于更高的认知领域。该图仅是出于说明目的而设计的,因此,皮层结构的神经解剖学(例如它们的大小和形状)并不精确。因为听觉脑干由下丘和其他结构组成,因此在面板B中未显示;该面板也未显示副神经核(有关这两个方面,请参见补充表2)。有关更多详细信息,包括特定的较低认知和非认知(DYS)功能,请参见补充表1(下脑干下部)和补充表2(上脑干上)。
创建和开发LeapFrog®产品伴随着我们在LeapFrog®非常重视的责任。我们竭尽全力确保信息的准确性,这是我们产品的价值。但是,有时会发生错误。对您来说,重要的是要知道我们站在产品后面,并鼓励您给我们的消费者服务部门致电您可能遇到的任何问题和/或建议。服务代表将很乐意为您提供帮助。UK Customers: Phone: 01702 200244 (from UK) or +44 1702 200244 (outside UK) Website: www.leapfrog.co.uk/support Australian Customers: Phone: 1800 862 155 Website: support.leapfrog.com.au NZ Customers: Phone: 0800 400 785 Website: support.leapfrog.com.au