躁郁症(BD)是一种慢性疾病,影响了世界人口的大约2.5%(Clemente等,2015; Merikangas等,2011)。虽然躁狂症状是BD的定义特征,但BD患者通常会花费更多的时间(Judd等,2002,2003),并且患者本身将抑郁症视为最繁重的情绪状态(MąCzka等,2010)。抑郁症状(甚至是亚州)与功能障碍,自杀性和对生活质量的负面影响有关(Altshuler等,2006;Bonnín等,2012; Hadjipavlou and Yatham,dive; (Ruggero等,2007)。目前可用于BD抑郁症的药物疗法有局限性(Frye等,2014; Yalin and Young,2020)。锂和抗精神病药与显着的副作用有关(Kemp,2014; Ketter等,2014),而抗抑郁药具有突破性躁狂症状的风险(Tondo等,2010)。即使接受治疗,许多患者也无法充分反应或重新恢复全部功能(Huxley和Baldessarini,2007; Wingo等,2010)。
1,000 多条 Lsvi 和 Lee 厚重牛仔喇叭裤、靴型牛仔裤和 Big Belle,适合男士、女士和儿童;Levi 和 Lee Denip 夹克和衬衫夹克,纯色、刺绣和水洗围兜式牛仔和山胡桃条纹工装裤;1,000 多件衬衫和上衣,印花、花卉、格子、格子图案、刺绣图案、纯色、牛仔和浅褐色;350 多套 Lee 和 Levi 休闲套装,双面针织和麻布涤纶,完全可洗,适合男士和女士;1,000 多双靴子,Dingo、Frye、Acme、Texas、Justin 和其他品牌的西部风格和休闲风格;数百条皮带,经过加工和喷漆设计;铸造锡和黄铜的花式带扣;皮革和毛毡帽子,皮夹克,光滑、绒面和流苏;鹅绒保暖夹克和背心——羊毛衬里的皮革和牛仔夹克——皮革背心,纯色和流苏——皮革钱包——手工制作的美国印第安绿松石犹太人——广场舞服装、鞋子和配饰——英国骑马服、马具和马鞍。
1,000 多条 Lsvi 和 Lee 厚重牛仔喇叭裤、靴型牛仔裤和 Big Belle,适合男士、女士和儿童;Levi 和 Lee Denip 夹克和衬衫夹克,纯色、刺绣和水洗围兜式牛仔和山胡桃条纹工装裤;1,000 多件衬衫和上衣,印花、花卉、格子、格子图案、刺绣图案、纯色、牛仔和浅褐色;350 多套 Lee 和 Levi 休闲套装,双面针织和麻布涤纶,完全可洗,适合男士和女士;1,000 多双靴子,Dingo、Frye、Acme、Texas、Justin 和其他品牌的西部风格和休闲风格;数百条皮带,经过加工和喷漆设计;铸造锡和黄铜的花式带扣;皮革和毛毡帽子,皮夹克,光滑、绒面和流苏;鹅绒保暖夹克和背心——羊毛衬里的皮革和牛仔夹克——皮革背心,纯色和流苏——皮革钱包——手工制作的美国印第安绿松石犹太人——广场舞服装、鞋子和配饰——英国骑马服、马具和马鞍。
2013年,Selmi博士从Modena和Reggio Emilia大学获得了分子和再生医学博士学位,重点是表征癌细胞系中TIS11蛋白家族在转录后调控的致癌mRNA。 2014年,Selmi博士移居英国剑桥大学,加入Michaela Frye的实验室,并在RNA修改的(重新)新兴领域工作。 在那里,Selmi博士的团队制作了全转录组的单核苷酸分辨率,依赖NSUN6依赖性5-甲基环肽(M5C),并研究了M5C和腺苷脱氨酸对转录倍率失误和密码元对人胚胎干细胞中人类胚胎干细胞中的影响(Selmi,Hussain Nar Nar 202222222222222222222222222222222222222222222222222122221222222222222EMTRICT和CODON deamination; 2019年,Selmi博士加入了Horizon Discovery在英国剑桥的创新团队,参与开发模块化CRISPR基础编辑器进行精确基因组编辑(Collantes JC,The CRISPR Journal 2021)。 2021年初,Selmi博士加入了Consiglio Nazionale Delle Ricerche(CNR)的生物医学技术研究所。 在Selmi实验室中,研究重点介绍了两个主要领域:RNA修饰的研究及其对mRNA翻译的影响以及CRISPR基础编辑者的技术发展。 实验室结合了先进的基因组编辑和测序技术,以探索癌症和干细胞细胞模型中的新调节机制。2013年,Selmi博士从Modena和Reggio Emilia大学获得了分子和再生医学博士学位,重点是表征癌细胞系中TIS11蛋白家族在转录后调控的致癌mRNA。2014年,Selmi博士移居英国剑桥大学,加入Michaela Frye的实验室,并在RNA修改的(重新)新兴领域工作。 在那里,Selmi博士的团队制作了全转录组的单核苷酸分辨率,依赖NSUN6依赖性5-甲基环肽(M5C),并研究了M5C和腺苷脱氨酸对转录倍率失误和密码元对人胚胎干细胞中人类胚胎干细胞中的影响(Selmi,Hussain Nar Nar 202222222222222222222222222222222222222222222222222122221222222222222EMTRICT和CODON deamination; 2019年,Selmi博士加入了Horizon Discovery在英国剑桥的创新团队,参与开发模块化CRISPR基础编辑器进行精确基因组编辑(Collantes JC,The CRISPR Journal 2021)。 2021年初,Selmi博士加入了Consiglio Nazionale Delle Ricerche(CNR)的生物医学技术研究所。 在Selmi实验室中,研究重点介绍了两个主要领域:RNA修饰的研究及其对mRNA翻译的影响以及CRISPR基础编辑者的技术发展。 实验室结合了先进的基因组编辑和测序技术,以探索癌症和干细胞细胞模型中的新调节机制。2014年,Selmi博士移居英国剑桥大学,加入Michaela Frye的实验室,并在RNA修改的(重新)新兴领域工作。在那里,Selmi博士的团队制作了全转录组的单核苷酸分辨率,依赖NSUN6依赖性5-甲基环肽(M5C),并研究了M5C和腺苷脱氨酸对转录倍率失误和密码元对人胚胎干细胞中人类胚胎干细胞中的影响(Selmi,Hussain Nar Nar 202222222222222222222222222222222222222222222222222122221222222222222EMTRICT和CODON deamination;2019年,Selmi博士加入了Horizon Discovery在英国剑桥的创新团队,参与开发模块化CRISPR基础编辑器进行精确基因组编辑(Collantes JC,The CRISPR Journal 2021)。2021年初,Selmi博士加入了Consiglio Nazionale Delle Ricerche(CNR)的生物医学技术研究所。在Selmi实验室中,研究重点介绍了两个主要领域:RNA修饰的研究及其对mRNA翻译的影响以及CRISPR基础编辑者的技术发展。实验室结合了先进的基因组编辑和测序技术,以探索癌症和干细胞细胞模型中的新调节机制。
听证会日期:2018 年 10 月 3 日 工作人员联系人:Shannon Ferguson – (415) 575-9074 shannon.ferguson@sfgov.org 审核人:Tim Frye – (415) 575-6822 tim.frye@sfgov.org a.提交日期:2018 年 5 月 1 日 案件编号:2018-006629MLS 项目地址:2253 Webster Street(第 2 区) 地标区:Webster Street 历史街区贡献者 分区:RH-2(住宅-房屋,双家庭区) 高度和体积:40-X 街区/地段:0612/001 申请人:Virginia Hong Revoc Living Trust 2253 Webster Street San Francisco, CA 94115 b.提交日期:2018 年 5 月 1 日 案件编号:2018-006717MLS 项目地址:353 Kearny Street(第 3 区) 地标区:IV 类 - Kearny-Market-Mason-Sutter 保护区附属建筑 分区:C-3-O - 市中心-办公室 高度和体积:80-130-F 街区/地段:0270/001 申请人:Pine Kearny LLC 590 Pacific Avenue San Francisco, CA 94133 c.提交日期:2018 年 5 月 1 日 案件编号:2018-006796MLS 项目地址:465-467 Oak Street(第 5 区) 地标区:加州历史名胜名录贡献者 - 列入海斯谷住宅历史区 分区:RTO(住宅交通导向区) 高度和体积:40-X 街区/地段:0840/017 申请人:Joseph E & Jennifer A Laska Jnt Lvg Trust 467 Oak Street San Francisco, CA 94102
主席 Hal Johnson 伦道夫县,经理 副主席 Rick Powell PEMMCO,总裁 Gary Bean Ramseur 商会,总裁 Jonathan Black 合作推广部,主任 Col. Ed Blair 警长办公室/副警长 Linda Brown 阿什伯勒-伦道夫商会总裁 Teresa Bruchon 自由商会执行董事 David Caughron 伦道夫县临终关怀院,营销总监 Terry Caviness 自由镇,市长 Perry Connor 富兰克林维尔镇,市长 Mimi Cooper 退休主任 公共卫生部门 Jay Dale 县规划部,主任 Cathryn Davis 县风险经理 Donovan Davis 紧急服务,主任 Kemp Davis 志愿农业区,主席 Lewis Dorsett PTRWA 代表 – Archdale Robert Dough 博士卫生委员会,主席 Beth Duncan 社会服务部,主任 Steve Eblin 伦道夫医院,总裁 David Fernandez 西格罗夫镇,市长 Alan Ferguson 业主协会,律师/NE Steve Foley EDC 主席,第一银行 Archdale Jeff Freeman兰德尔曼商会 Darrell Frye 理事会主席 Stephen Gainey 博士 县学校督学 Robert Graves 伦道夫县警长 Lisa Hayworth 伦道夫儿童伙伴关系 Jesse Hill 三一市市长 Debbie Hinson 三一市经理 Nick Holcomb 兰德尔曼市经理 Zeb Holden 阿奇代尔市城市经理/规划总监
通过GABA能中间神经元(INS)抑制法规在正常大脑中的复杂神经计算中起着至关重要的作用,其畸形和功能错误会导致多种脑部疾病(Del Pino等,2018; Frye等,2016; kepecs and 2016; Kepecs and 2014; kepecs and fishell,2014; theanno; theang; theang; ealig; al ang e e eT; Al。,2016)。在过去的二十年中,在理解GABA能抑制回路的发展,可塑性,功能和病理相关性方面取得了显着进展。尤其是单细胞OMICS,遗传靶向,体内成像,功能操纵和行为分析的最新技术进步,我们在亚型中的知识已经爆炸。文章的研究主题,包括七篇原始研究论文和两项评论,其主题是“哺乳动物大脑中GABA能抑制回路的组装,可塑性和功能的主题”主题,突显了我们要走多远,以及我们需要走的地方。这些报告全面讨论了有关GABA能抑制系统的主题,从细胞类型的规范,突触组件和功能多样性到其在健康和疾病中的作用。总体目标是解开无数的INS将自己编织到功能电路中,这是理解皮质抑制的力量和脆弱性的核心。The challenging but essential tasks for dissecting the inhibitory system is to disentangle intricate inhibitory circuits consisting of diverse GABAergic IN subtypes ( Bandler et al., 2017 ; Hu et al., 2017 ; Lodato and Arlotta, 2015 ; Miyoshi, 2019 ; Pelkey et al., 2017 ).Machold和Rudy回顾了由转录组学和发育起源定义的亚型皮质和海马的新兴观点,并突出了一种用于靶向亚型特定的遗传工具包,以及每种方法固有的技术考虑因素。
华盛顿。 在此之后的四个月之后,科学学院(NAS)发表了一份报告,旨在结束关于DNA法律指纹的争议,情况一如既往地混乱。 尽管该报告得出的结论是应接受的,但至少三个州法院裁定DNA证据是不可接受的。 情况已经恶化,到一家DNA指纹公司(总部位于马里兰州的Cellmark Diagnostics Inc.)希望NAS小组阐明其结论。 法院在4月份发布报告时未预见的原因拒绝了DNA证据(见Nature 356,552; 1992)。 它的建议之一是为更好的实验室质量控制标准和认证程序,并且某些DNA指纹批评家提出了争论(足以说明在纽约TLL7X!s的头版上出现在本质上是在第二天撤回的文章中的DNA证据),该DNA证据应不可能建立在此过程中。 ,但最困扰法院的问题与统计有关,而不是标准。 加利福尼亚上诉法院,马萨诸塞州的最高司法法院和美国关岛美国地方法院都裁定(引用NAS报告和随附的争议),即科学的不确定性对人口的作用的科学不确定性在计算DNA匹配的情况下进行了验证的措施,该措施是在某种程度上进行的,以至于无法通过193的措施来实现这一措施,该措施是在某种程度上进行的。 最高法院。 尽管NAS小组认为使用DNA证据是适当的,但该信息一直在努力消失。华盛顿。在此之后的四个月之后,科学学院(NAS)发表了一份报告,旨在结束关于DNA法律指纹的争议,情况一如既往地混乱。尽管该报告得出的结论是应接受的,但至少三个州法院裁定DNA证据是不可接受的。情况已经恶化,到一家DNA指纹公司(总部位于马里兰州的Cellmark Diagnostics Inc.)希望NAS小组阐明其结论。法院在4月份发布报告时未预见的原因拒绝了DNA证据(见Nature 356,552; 1992)。它的建议之一是为更好的实验室质量控制标准和认证程序,并且某些DNA指纹批评家提出了争论(足以说明在纽约TLL7X!s的头版上出现在本质上是在第二天撤回的文章中的DNA证据),该DNA证据应不可能建立在此过程中。,但最困扰法院的问题与统计有关,而不是标准。加利福尼亚上诉法院,马萨诸塞州的最高司法法院和美国关岛美国地方法院都裁定(引用NAS报告和随附的争议),即科学的不确定性对人口的作用的科学不确定性在计算DNA匹配的情况下进行了验证的措施,该措施是在某种程度上进行的,以至于无法通过193的措施来实现这一措施,该措施是在某种程度上进行的。 最高法院。尽管NAS小组认为使用DNA证据是适当的,但该信息一直在努力消失。结果,使用除最保守的统计数据以外的所有统计数据的DNA证据现在在马萨诸塞州,加利福尼亚和关岛的某些地区不可能。在发布报告的前一天,《纽约时报》上的一篇文章将其结论描述为对DNA证据的打击。约翰·霍普金斯大学(Johns Hopkins University)的Victor McKusick主席,在文章发表几个小时后,在匆忙安排的新闻发布会上否认了这种解释。从那以后,哈佛大学的《纽约书评评论》(Revers of Books of Books Review of Books Review of Books Review of New York)的其他几篇文章(最著名的是6月份的评论)认为,NAS小组并没有承受其自己报告的影响。马萨诸塞州和加利福尼亚的裁决支持这一论点。NAS端口要求从人口子组中绘制的扩展数据库和RECOM-
Asai T,Tena G,Plotnikova J,Willmann MR,Chiu W-L,Gomez-Gomez L,Boller T,Ausubel FM,Sheen J。拟南芥先天免疫中的激酶信号传导级联。自然。2002:415(6875):977–983。 https://doi.org/10.1038/415977a bi G,Zhou Z,Wang W,Li L,Rao S,Wu Y,Zhang X,Menke flh,Chen S,Zhou J-M。 受体样细胞质激酶直接将各种模式识别受体与拟南芥中有丝分裂原激活的蛋白激酶级联反应的激活联系起来。 植物细胞。 2018:30(7):1543–1561。 https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。 通过保守的MAPKK激酶对植物中防御反应的负调节。 Proc Natl Acad Sci U S A. 2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2002:415(6875):977–983。https://doi.org/10.1038/415977a bi G,Zhou Z,Wang W,Li L,Rao S,Wu Y,Zhang X,Menke flh,Chen S,Zhou J-M。受体样细胞质激酶直接将各种模式识别受体与拟南芥中有丝分裂原激活的蛋白激酶级联反应的激活联系起来。植物细胞。2018:30(7):1543–1561。https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。 通过保守的MAPKK激酶对植物中防御反应的负调节。 Proc Natl Acad Sci U S A. 2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。通过保守的MAPKK激酶对植物中防御反应的负调节。Proc Natl Acad Sci U S A.2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2001:98(1):373–378。https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。J Integn Plant Biol。2021:63(2):327–339。https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1111/jipb。13007 Tang D,Innes RW。EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。植物J.2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2002:32(6):975–983。https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。植物生理学。2024:194(1):578–591。https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。铜制固醇信号激酶1磷酸化mapkkk5以调节拟南芥的免疫力。植物生理学。2018:176(4):2991–3002。 https://doi.org/10.1104/pp.17.01757 Zhao C,Nie H,Shen Q,Zhang S,Lukowitz W,Tang d。 EDR1与MKK4/MKK5物理相互作用,并负调节MAP激酶级联反应以调节植物先天免疫。 PLOS基因。 2014:10(5):E1004389。 https://doi.org/10.1371/journal.pgen.10043892018:176(4):2991–3002。https://doi.org/10.1104/pp.17.01757 Zhao C,Nie H,Shen Q,Zhang S,Lukowitz W,Tang d。EDR1与MKK4/MKK5物理相互作用,并负调节MAP激酶级联反应以调节植物先天免疫。PLOS基因。2014:10(5):E1004389。 https://doi.org/10.1371/journal.pgen.10043892014:10(5):E1004389。https://doi.org/10.1371/journal.pgen.1004389
[19] Kunin,V.,Copeland,A.,Lapidus,A.,Mavromatis,K。,&Hugenholtz,P。(2008)。宏基因组学的生物信息学指南。微生物学和分子生物学评论,72(4),557-578。[20] Jolley,K。A.,Chan,M。S.,&Maiden,M.C。(2004)。MLSTDBNET分布的多洛克斯序列键入(MLST)数据库。BMC生物信息学,5(1),86。[21] Enright,M。C.和Spratt,B。G.(1999)。多焦点序列键入。微生物学的趋势,7(12),482-487。[22] Healy,M.,Huong,J.,Bittner,T.,Lising,M.,Frye,S.,Raza,S。,&Woods,C。(2005)。通过自动重复序列的PCR键入微生物DNA。临床微生物学杂志,第43(1)期,199-207。[23] Vergnaud,G。和Pourcel,C。(2006)。多个基因座VNTR(串联重复的可变数量)分析。分子鉴定,系统学和原核生物的种群结构,83-104。[24] Van Belkum,A。(2007)。通过多焦点数量的串联重复分析(MLVA)来追踪细菌物种的分离株。病原体和疾病,49(1),22-27。[25] Vergnaud,G。和Pourcel,C。(2009)。多个基因座变量串联重复分析数。微生物的分子流行病学:方法和方案,141-158。[26] Fricke,W。F.,Rasko,D。A.和Ravel,J。(2009)。基因组学在鉴定,预测和预防生物学威胁中的作用。PLOS Biology,7(10),E1000217。[27] Wu,M。和Eisen,J。A.(2008)。95-100)。一种简单,快速且准确的系统基因推断方法。基因组生物学,9(10),R151。[28] Liu,B.,Gibbons,T.,Ghodsi,M。和Pop,M。(2010年12月)。隐式:元基因组序列的分类分析。生物信息学和生物医学(BIBM),2010年IEEE国际会议(pp。IEEE。 [29] Wang,Z。,&Wu,M。(2013)。 门水平细菌系统发育标记数据库。 分子生物学与进化,30(6),1258-1262。 [30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J. A. (2014)。 系统缩影:基因组和宏基因组的系统发育分析。 peerj,2,e243。 [31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。 土壤采样和细胞外DNA的分离,适用于大量的起始材料。 分子生态学,21(8),1816-1820。IEEE。[29] Wang,Z。,&Wu,M。(2013)。门水平细菌系统发育标记数据库。分子生物学与进化,30(6),1258-1262。[30] Darling,A。E.,Jospin,G.,Lowe,E.,Matsen IV,F。A.,Bik,H。M.,&Eisen,J.A.(2014)。系统缩影:基因组和宏基因组的系统发育分析。peerj,2,e243。[31] Taberlet,P.,Prud'Homme,S.M.,Campione,E.,Roy,J.,Miquel,C.,Shehzad,W。,&Melodelima,C。(2012)。土壤采样和细胞外DNA的分离,适用于大量的起始材料。分子生态学,21(8),1816-1820。