1. 简介 1 1.1 背景 1 1.1.1 电动汽车 1 1.1.2 公司 A 3 1.2 问题表述 3 1.3 目的 4 1.4 研究问题 4 1.5 界限 4 1.6 研究贡献 5 1.7 论文赞助商 5 1.8 处置 5 2. 燃料零售商 7 2.1 运营流程 7 3. 文献综述 9 3.1 市场环境 9 3.2 数字化转型 11 3.2.1 业务流程 11 3.2.2 数字化计划 13 3.3 变革管理 15 3.3.1 技术变革 16 3.4 商业模式 17 3.4.1 燃料零售商业模式的四个要素 19 3.4.2 移动商业模式 21 3.4.3 以客户为中心的模式 23 4. 方法26 4.1 研究策略 26 4.2 研究设计 27 4.2.1 案例研究 28 4.3 数据收集 29 4.3.1 半结构化访谈 29 4.4 数据分析 32 4.5 有效性和可靠性 32 4.6 伦理考虑 33 4.7 实证设置 35 4.7.1 参与者人口统计和选择 35 4.7.2 类别选择 35 5. 调查结果和分析 38 5.1 充电基础设施 38 5.1.1 充电点的发展 38 5.1.2 家庭和工作场所充电箱零售 39 5.1.3 充电基础设施发展中的瓶颈 40 5.2 数字化举措 42
▶ 本报告将 Syzygy 的 SAF 技术与传统 Jet A 航空燃料、电转液 (PtL) SAF 和基于乙醇的酒精转喷气 (ATJ-e) SAF 进行了比较。▶ 本报告评估了油井到尾流系统边界,涵盖了从原材料提取和运输到燃料生产和燃烧的所有上游和下游影响。▶ Boundless 评估了 Syzygy 的 SAF 产品以及竞争航空燃料的环境性能,特别是与它们的温室气体 (GHG) 足迹和水足迹相关。▶ Syzygy 的 SAF 的温室气体足迹为每兆焦耳 (MJ) -2.50 克二氧化碳当量 (g CO 2 e),比传统 Jet A 航空燃料低 103%。▶ Syzygy 的 SAF 的水足迹为每 MJ 0.0253 升 (L),比传统 Jet A 航空燃料低 59.1%。 ▶ 考虑到市场渗透率和每年 3874 万兆焦 SAF 的预计生产率,使用 Syzygy SAF 代替 Jet A 可在 2024 年至 2030 年期间总共减少超过 24.8 千吨二氧化碳当量的温室气体排放。
目标是 (1) 记录 BPL 燃料关税的计算方式 - 遵循的流程、使用的公式和所需的支持文件,以及 (2) 确定自 2021 年以来对客户收取的费用是否符合法律和监管框架。巴哈马面临着非常高的电力成本,主要是由于燃料成本高且波动性大。使用老旧且效率低下的发电资产也加剧了这一问题。能源价格高涨导致所有费率等级的客户普遍抗议。
第一个实用的燃料电池是 1932 年英国的 F.T. 培根 (FT Bacon) 开始研究的成果。最终,培根开发的 5 千瓦氢氧碱性电解液系统通过为焊接机、圆锯和 2 吨叉车供电,证明了其能力。随着这种“新”电源装置应用的这些和其他演示,燃料电池终于走出了实验室。然而,正是全世界对 NASA 太空任务的关注,才让数百万人开始使用“燃料电池”这个词。具有讽刺意味的是,可能是在太空飞行期间宣布了燃料电池的真实或疑似故障,而不是燃料电池在太空中通常的平稳性能,才让燃料电池得到了广泛的认可。(阿波罗 13 号飞行失败就是一个例子。发射前氧气供给控制组件的故障——而不是宣称的燃料电池问题——才是这场险些酿成灾难的真正原因,这场灾难引起了数百万人的关注。)
火箭燃料对环境的影响 有毒火箭燃料对环境造成灾难性影响。它们污染了高层大气,燃烧副产物的积累导致臭氧层损失 (Dallas, 2020)。火箭推进剂还会危害地球上的生态系统:一个显著的例子是不对称二甲基肼 (UDMH),这种燃料被发明它的苏联科学家称为“魔鬼的毒液”。俄罗斯质子火箭从哈萨克草原发射时使用了 UDMH,导致多起重大事故(1960 年的涅德林灾难和 2013 年的类似事故),污染了当地环境 (Gingerich, 2015)。美国有能力为规范火箭燃料树立全球先例,避免在美国本土发生类似的灾难。常用的推进剂有四种 (Ross, 2018):
神经刺激是一个快速增长的市场,在2027年的年增长率为8.5%,预计全球市场销量为410亿美元,[1],全球医疗技术公司以及试图商业化技术的初创企业。[2,3]要在植入医学中推动这场革命,需要新的功率来源,这可以为植入物提供安全,稳定的能量,同时使这些设备的微型化到空前的规模,以最大程度地减少植入物对患者的影响。植入物设备的功率需求通常位于100 nW至1 MW的范围内[4-6],并且能量和功率密度增加的功率源超出了当前功能,可以使感应,电子刺激或药物输送的新功能非常不可能。迄今为止,可植入的设备由诸如Li – I 2 Pacemaker电池[7,8]等电池提供动力,其电量和重量的能量密度分别为≈1000WH-1和≈270WH kg-1,[9],或通过无线能量传输,例如RF传输[10,1111]或Ulteras-Asound。[12]由于其性质,电池不能在不牺牲大量的能量存储能力的情况下轻松地微型化,[13],并且由于使用天线区域通过感应尺度传输的功率,无线能量传递的微型化电位也受到限制。此外,Li – I 2起搏器电池是不可充电的电池,这意味着
Sanjay Bajpai Head Technology Divicion(EW)科学技术部(DST)新德里Sanjay Bajpai博士毕业于斋浦尔的Malaviya National Institute,毕业于Malaviya National Institute of Jaipur,并从阿杰梅尔(Ajmer)拉贾斯坦大学(University of Rajasthan)担任商业管理硕士学位。他被印度理工学院 - 戴尔希学院(Institute of Institute of Instute of Instrapent)授予博士学位,以“内燃机替代燃料”的研究工作。他已经管理并塑造了几项国家,双边和多边研究,发展和创新计划。他专门研究需要应用S&T的技术开发和社会经济计划。目前,他是科学技术系的领导技术任务部,负责水和清洁能源领域领先的研究,开发和创新活动。他代表印度参加了许多双边和多边活动,并在这些领域中阐明了国家和国际努力。
注意 本文件由美国运输部赞助发布,旨在促进信息交流。美国政府对其内容或使用不承担任何责任。美国政府不认可产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
两种有前途的燃料电池类型是质子交换膜 (PEM) 和固体氧化物燃料电池 (SOFC)。PEM 技术最早于 20 世纪 60 年代用于双子座航天器,此后一直未被使用,直到汽车行业最近认识到其潜力。PEM 燃料电池是低温设备,启动时间短,但需要相对纯净的氢燃料。相比之下,SOFC 在高温下运行,可耐受更高水平的杂质。这种灵活性使 SOFC 能够使用碳氢化合物燃料,这是考虑到我们目前的液态石油基础设施的一个重要因素。但是,根据具体应用,PEM 或 SOFC 都可能具有吸引力。
