此Green-E®可再生燃料标准(“标准”)文档提供了绿色 - E®可再生燃料生产,销售和消费的认证要求。Green-E®认证计划由非营利性资源解决方案中心管理,并通过提供环境标准和消费者保护来支持自愿购买和使用可再生能源和碳offs,促进使用高质量的可再生能源和减少碳。高质量的可再生能源和抵消标准和认证加速了可再生和碳市场的发展,并为消费者提供了一种有意义的机制,通过这些机制,他们可以表达对可再生能源选择的需求,而温室气体(GHG)减少。有关此标准目标的更多信息,请参阅以下网址:https://www.green- e.org/renewable-fuels/documents。本标准适用于可再生燃料交易和最终使用的认证,以及对特定燃料生产途径的验证。可再生燃料产品和可再生燃料证书(RFC)的生产商,卖方和用户可能适用于:提供根据标准认证的可再生燃料产品或RFC;验证合格的可再生燃料途径;或通过访问https://www.green- e.org/renewable-fuels来认证可再生燃料购买。此标准的1.0版仅适用于生物甲烷。将来可以考虑其他可再生燃料。此外,Green-E®词汇表定义了此标准中出现的许多术语。两者都将在https://www.green-e.org/renewable-fuels上发布。有关Green-E®认证标准,申请过程,验证过程,营销合规审查以及其他信息的其他详细信息,请参见Green-E®可再生能源燃料的行为守则。有关Green-E®认证计划的更多信息和背景,包括计划治理,请访问https://www.green-e.org。
A. Steinfeld:我即将退休,这是回顾过去经历的好时机。这是一段奇妙的旅程,充满了许多快乐的时刻,但也有很多失败,这是先驱研究中固有的。我职业生涯中这些特殊时刻之一就是与我的团队一起见证了安装在机械实验室大楼屋顶上的太阳能微型炼油厂的启动运行,并观察到第一滴甲醇仅由阳光和空气产生。该装置代表了十年来在几个对项目成功至关重要的基本主题上的研发成果,包括开发氧化还原材料和结构、分析热力学和动力学、模拟高温下的热量和质量传输、设计高通量光学器件,以及最后但并非最不重要的是设计太阳能反应堆以高效生产太阳能燃料。至于我们一路上遇到的许多失败,我们通过应用良好的工程技术和坚持不懈克服了它们。
该文件仅供参考,旨在支持国家能源部门的规划。值得注意的是,任何有关方向的决定,例如制定公共政策、战略指导方针、投资决策或商业战略,都必须由其他公共和私人机构做出。
• 可持续航空燃料办公室或类似机构 - 鉴于可持续航空燃料作为减少航空碳排放和为英国工业带来经济效益的措施,在短期内提供了重大机遇,我们需要一个专门的可持续航空燃料办公室 (OSAF) 或类似的跨部门机构,拥有适当的治理结构、成员和资源 - 这对于提供必要的跨政府协调和明显的支持至关重要,以推进 SAF 的开发和商业部署。这可以基于成功的低排放汽车办公室 (OLEV) 或航空技术研究所 (ATI) 的公私合作伙伴关系成功。这将提供必要的跨政府协调,以推进可持续航空燃料的开发和商业部署。
本文件根据 2003 年《石油管道法》规定了 Astron Energy (Pty) Ltd. (1911/0011054/07) 的分配机制。Astron Energy(以 Chevron South Africa 的名义)及其合资企业 (JV) 伙伴(如适用)获得了 NERSA 颁发的以下设施的储存运营许可证:Alrode (JV) (PPL.sf.F3/33/2006) East London (PPL.sf.F3/31/20/2006) Klerksdorp (JV) (PPL.sf.F3/30/2/2006) Kroonstad (JV) (PPL.sf.F3/31/1/2006) Port Elizabeth (JV) (PPL.sf.F3/3/4/2006) Waltloo (PPL.sf.F3/31/10/2006) 上述站点的闲置容量详情已在 Astron Energy 网站 (www.astronenergy.co.za) 上公布。未承诺容量是指能源监管机构确定的容量,目前许可证持有者尚未履行合同义务。此分配机制符合《条例》第 3(8) 条,适用于希望使用未承诺容量的第三方,并概述了以下内容:a. 费率表;b. 使用存储设施的技术要求;c. 第三方在请求访问时应遵循的流程 d. 有关使用和付款的合同条款和条件
塑料回收中最快的缩放比例和扩展区域之一是废物塑料通过热解的转化为石化物质,并将碳氢化合物固定。塑料(也称为热解或聚合物开裂)一直是塑料废物管理的潜在途径,但在过去的五年中已经显着生长和扩张[1]。热解可以简单地定义为在没有氧气的情况下在高温下聚合物的降解,从而产生由气态和液态碳氢化合物分数组成的油。换句话说,可以将塑料转变为最初从地面泵送并在油填充物中转化为碳氢化合物的原油。在由Ellen MacArthur基金会(EMF)概述的三个塑料回收固定循环中,热解会落入分子环中,在该循环中,聚合物骨架被分解至分子水平与父母单体的分子水平分散,并且需要进一步的化学性,并且需要在重新培训回到原始聚合物之前进行重新淋巴结(图1)[2] [2] [2]。
爱荷华州玉米作物。如果没有乙醇行业对玉米的需求,爱荷华州农民可能会减少玉米种植面积、购买更少的投入品,产量也会更少,从而减少玉米行业对经济的贡献。
从石器时代开始,人类使用燃料,将其定义为任何用于能源转化的能源载体(联合国食品和农业组织,2004年;国际标准化组织,2014年)。在公元前790,000年建立了使用驯化火力的第一个证据。(Alperson-Afil和Goren-Inbar,2010年)。因此,生物质一直是人类用于安全,烹饪和供暖的第一个燃料。如今,大多数使用的能源是化石燃料。 在2019年,石油,煤炭和天然气分别占全球主要能源消耗的31%,25%和23%(我们的数据世界,2021年)。 尽管它们的优势很大,能量密度很高,但这些燃料仍有一个主要的缺点:它们的燃烧释放了大量二氧化碳(2019年CO 2的35 GT),主要负责气候变化(国际能源机构,2020b)。 能源过渡的最大挑战是在减少温室气体排放的同时确保能源供应。 实际上,这意味着要找到化石燃料的替代品。 首先,在能源过渡的背景下,燃料将继续在全球能源系统中发挥重要作用(Ahlgren,2012年)。 即使电力通过能源需求的电力获得了份额,它也不会完全置换燃料,这是出于三个主要原因:存储,基础设施兼容性和跨部门链接。 由于经济惯性及其基础设施遗产(Ahlgren,2012),燃料仍然是需要高能量密度的部门的最合适解决方案(例如 Contino等。如今,大多数使用的能源是化石燃料。在2019年,石油,煤炭和天然气分别占全球主要能源消耗的31%,25%和23%(我们的数据世界,2021年)。尽管它们的优势很大,能量密度很高,但这些燃料仍有一个主要的缺点:它们的燃烧释放了大量二氧化碳(2019年CO 2的35 GT),主要负责气候变化(国际能源机构,2020b)。能源过渡的最大挑战是在减少温室气体排放的同时确保能源供应。实际上,这意味着要找到化石燃料的替代品。首先,在能源过渡的背景下,燃料将继续在全球能源系统中发挥重要作用(Ahlgren,2012年)。即使电力通过能源需求的电力获得了份额,它也不会完全置换燃料,这是出于三个主要原因:存储,基础设施兼容性和跨部门链接。由于经济惯性及其基础设施遗产(Ahlgren,2012),燃料仍然是需要高能量密度的部门的最合适解决方案(例如Contino等。由于它们的间歇性和空间差异,可变可再生能源(VRE)的更深入整合需要存储和运输,以便在正确的时间和正确的位置提供能源需求(Hall and Bain,2008; Evans等,Evans等,2012; Brouwer等,2016; Gallo等,2016; Gallo等,2016; Rosa; Rosa; Rosa,2017; Rosa,2017)。,如果典型的电池容器在存储容量(最高10兆瓦时)和目前的显着成本和自我释放损失方面有限,那么能源转换为燃料为更高的存储容量(从100 GWH)(从100 GWH)和更长的存储时间尺度(几个月至年度)提供了更便宜的解决方案(Rosa,2017年)。重型运输,运输,航空或化学工业)(Zeman和Keith,2008; Pearson等,2012; Rosa,2017; Rosa,2017; Goede,2018; Trieb等,2018; Decker et al。,2019; Albrecht and Nguyen and Nguyen,2020; Stan ˇCin等,2020年)。(2020)指出,能源转变是跨学科的努力,而不仅仅是电力部门。后者仅代表全球能源消耗的五分之一(国际能源机构,2020a)。也,Goede(2018)在2018年表明,荷兰的CO 2排放量在不同类型的最终用途中同样分配(即功率,热量,流动性和非能量)。这强调了考虑每个能源部门的必要性,而不是将所有精力集中在电力系统上,甚至更多地转向朝着多向量相互联系的能源系统转移。鉴于将可再生能源转化为燃料的途径的越来越多,需要进行清晰的分类和术语(Bailera等,2017)。在这种跨部门方法中,从增加VRE的份额的角度来看,燃料是有希望的能源载体,以最大程度地提高整体系统的效率(Mathiesen等,2015; Stan ˇCin等,2020)。如Ridjan等人所预测的。(Ridjan等,2016),现在有必要通过使用更全面和定量的术语来支持正确的燃料技术开发(例如指定生物质在能量中的份额