摘要。Fujisaki-Okamoto Transform(FO)是实现Quantum Post-Quantum键封装机制(KEMS)选择的首选方法。通过重新加密步骤,FO中的重要步骤正在增强解密/解密算法 - 重新加密解密的消息以检查是否使用了正确的加密随机性。在解决安全问题(Ciphertext-Malleability)时,重新加密已成为引入侧渠道漏洞,并且计算昂贵,这使设计师促使设计师搜索替代方案。在这项工作中,我们对此类替代方案进行了全面研究。我们将中央安全属性,计算刚度正式化,并表明它足以获得CCA安全性。我们提出了一个用于分析算法的框架,该算法可以取代重新加密并仍然达到刚性,并在此框架中分析现有建议。在此过程中,我们选择了一个新颖的QROM安全声明,以根据确定性的PKE方案明确拒绝KEM,这是迄今为止仅在需要基本PKE方案难以确定的量子属性时才有可能的。
2背景2 2.1通用晶格攻击。。。。。。。。。。。。。。。。。。。。。2 2.2安全假设。。。。。。。。。。。。。。。。。。。。。。4 2.2.1研究ASPPTIONS的安全级别的重要性。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.2加密系统中使用的假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.2.3计算与决策LWE变量。。。。。。。7 2.2.4 LWE与LWR。。。。。。。。。。。。。。。。。。。。。7 2.2.5部分校正加密系统。。。。。。。。。。。8 2.2.6安全假设。。。。。。。。。。。。。。。。。。。8 2.2.7基本的REGEV加密系统。。。。。。。。。。。。。。10 2.3一般设计框架和可证明的安全性。。。。。。。12 2.3.1 Fujisaki Okamoto变换(有隐性拒绝)12 2.3.2安全损失。。。。。。。。。。。。。。。。。。。。。。。。13 2.3.3菲亚特 - 沙米尔变换。。。。。。。。。。。。。。。。14 2.4关于回合2 C软件的一般说明。。。。。。。。。。。。。15 2.4.1正确性。。。。。。。。。。。。。。。。。。。。。。。。15 2.4.2防止正时攻击。。。。。。。。。。。。15 2.4.3基准。。。。。。。。。。。。。。。。。。。。。。。。16 2.4.4将来的速度。。。。。。。。。。。。。。。。。。。。。。。16
鉴于其在诸如Crystals-Kyber之类的现代加密系统中不可或缺的作用,Fujisaki Okamoto(FO)变换将很快成为我们安全通信基础架构的中心。围绕FO变换的持久辩论是当解次失败时是否使用显式或隐式拒绝。目前,在晶体 - 凯伯(Crystals-kyber)中实施的隐性拒绝受到了一系列论点的支持。因此,了解其在不同攻击者模型中的安全含义至关重要。在这项工作中,我们通过新颖的镜头来研究隐式拒绝,即从Kleptography的角度研究。具体而言,我们考虑了一个攻击者模型,在该模型中,攻击者可以颠覆用户的代码以损害安全性,同时无法检测到。在这种情况下,我们提出了三项攻击,这些攻击大大降低了FO转换的安全水平,并具有隐式拒绝。
* PA中的其他氨基酸取代,在参考文献1(Omoto S等,2018)和#2(Hashimoto T等,2020年)中研究了Baloxavir易感性没有变化的其他氨基酸取代。通过基于细胞培养的测定法评估(焦点,斑块或屈服分析,高含量成像中和(提示)和ViroDot分析)。EC 50倍变化。b细胞,细胞培养;临床试验;小鼠,鼠标模型; RG,反向遗传学; SUR,监视研究; BXA,在Baloxavir压力下选出的取代;不,Baloxavir不使用。c e23g(T0831)。通过表型测定测试了带有E23G的RG病毒。d对应于A36V A型A型PA中的A36V。 E对应于A型A型PA中的E119D。参考文献1。Omoto S,Speranzini V,Hashimoto T,Noshi T,Yamaguchi H,Kawai M,Kawaguchi K,Uehara T,Shishido T,Naito A,Naito A,Cusack S.2018。通过核酸内切酶抑制剂Baloxavir maroxil诱导的流感病毒变体的表征。SCI REP 8:9633。2。Hashimoto T,Baba K,Inoue K,Okane M,Hata S,Shishido T,Naito A,Wildum S,Omoto S.2020。在Baloxavir Marboxil的临床试验中检测到的流感病毒的三聚体RNA聚合酶复合物中氨基酸取代的全面评估。流感其他呼吸病毒DOI:10.1111/irv.12821。3。ince WL,Smith FB,O'Rear JJ,Thomson M.2020。J Infect DIS 222:957-961。 4。 2018。J Infect DIS 222:957-961。4。2018。治疗 - 伴随流感病毒聚合酶酸性取代率与Balosavir Maroxavir Marboxil试验中的i38中的i38中的酸性取代相关。Noshi T, Kitano M, Taniguchi K, Yamamoto A, Omoto S, Baba K, Hashimoto T, Ishida K, Kushima Y, Hattori K, Kawai M, Yoshida R, Kobayashi M, Yoshinaga T, Sato A, Okamatsu M, Sakoda Y, Kida H, Shishido T, Naito A.Baloxavir酸的体外表征,Baloxavir酸是一种流感病毒聚合酶PA亚基的第一类帽依赖性内切酶抑制剂。抗病毒Res 160:109-117。5。Takashita E,Morita H,Ogawa R,Nakamura K,Fujisaki S,Shirakura M,Kuwahara T,Kishida N,Watanabe S,Odagiri T.2018。流感病毒对新型帽依赖性核酸内切酶抑制剂baloxavir maroxil的敏感性。前微生物9:3026。6。Gubareva LV,Mishin VP,Patel MC,Chesnokov A,Nguyen HT,De La Cruz J,Spencer S,Spencer S,Campbell AP,Sinner M,Reid H,Reid H,Garten R,Katz JM,Katz JM,Fry AM,Barnes J,Barnes J,Wentworth DE。 2019。 评估在2016/17和2017/18季节在美国循环的流感病毒的Baloxavir敏感性。 欧元监视24:1800666。 7。 Takashita E, Daniels RS, Fujisaki S, Gregory V, Gubareva LV, Huang W, Hurt AC, Lackenby A, Nguyen HT, Pereyaslov D, Roe M, Samaan M, Subbarao K, Tse H, Wang D, Yen HL, Zhang W, Meijer A. 2020。 全球关于人流感病毒对神经氨酸酶抑制剂和cap依赖性核酸内切酶抑制剂Baloxavir的敏感性的更新,2017- 2018年。 抗病毒Res 175:104718。 8。 2020。Gubareva LV,Mishin VP,Patel MC,Chesnokov A,Nguyen HT,De La Cruz J,Spencer S,Spencer S,Campbell AP,Sinner M,Reid H,Reid H,Garten R,Katz JM,Katz JM,Fry AM,Barnes J,Barnes J,Wentworth DE。2019。评估在2016/17和2017/18季节在美国循环的流感病毒的Baloxavir敏感性。欧元监视24:1800666。7。Takashita E, Daniels RS, Fujisaki S, Gregory V, Gubareva LV, Huang W, Hurt AC, Lackenby A, Nguyen HT, Pereyaslov D, Roe M, Samaan M, Subbarao K, Tse H, Wang D, Yen HL, Zhang W, Meijer A.2020。全球关于人流感病毒对神经氨酸酶抑制剂和cap依赖性核酸内切酶抑制剂Baloxavir的敏感性的更新,2017- 2018年。抗病毒Res 175:104718。8。2020。Takashita E, Abe T, Morita H, Nagata S, Fujisaki S, Miura H, Shirakura M, Kishida N, Nakamura K, Kuwahara T, Mitamura K, Ichikawa M, Yamazaki M, Watanabe S, Hasegawa H, Influenza Virus Surveillance Group of J.流感A(H1N1)PDM09病毒,由于未经Baloxavir治疗的儿童检测到PA E23K替代而表现出对Baloxavir的敏感性降低。抗病毒Res 180:104828。 9。 Koszalka P,Tilmanis D,Roe M,Vijaykrishna D,Hurt AC。 2019。 亚太地区流感病毒的Baloxavir Marboxil易感性,2012- 2018年。 抗病毒Res 164:91-96。 10。 Jones JC,Pascua PNQ,Fabrizio TP,Marathe BM,Seiler P,Barman S,Webby RJ,Webster RG,Govorkova EA。 2020。 流感和B病毒具有降低的Baloxavir敏感性显示器的体外适应性减弱,但保留了雪貂的可传播性。 Proc Natl Acad Sci U S A 117:8593-8601。 11。 Chesnokov A,Patel MC,Mishin VP,De La Cruz JA,Lollis L,Nguyen HT,Dugan V,Wentworth DE,Gubareva LV。 2020。 季节性流感A病毒的复制适应性,对Baloxavir的敏感性降低。 J Infect DIS 221:367-371。 12。 Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。抗病毒Res 180:104828。9。Koszalka P,Tilmanis D,Roe M,Vijaykrishna D,Hurt AC。2019。亚太地区流感病毒的Baloxavir Marboxil易感性,2012- 2018年。抗病毒Res 164:91-96。 10。 Jones JC,Pascua PNQ,Fabrizio TP,Marathe BM,Seiler P,Barman S,Webby RJ,Webster RG,Govorkova EA。 2020。 流感和B病毒具有降低的Baloxavir敏感性显示器的体外适应性减弱,但保留了雪貂的可传播性。 Proc Natl Acad Sci U S A 117:8593-8601。 11。 Chesnokov A,Patel MC,Mishin VP,De La Cruz JA,Lollis L,Nguyen HT,Dugan V,Wentworth DE,Gubareva LV。 2020。 季节性流感A病毒的复制适应性,对Baloxavir的敏感性降低。 J Infect DIS 221:367-371。 12。 Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。抗病毒Res 164:91-96。10。Jones JC,Pascua PNQ,Fabrizio TP,Marathe BM,Seiler P,Barman S,Webby RJ,Webster RG,Govorkova EA。2020。流感和B病毒具有降低的Baloxavir敏感性显示器的体外适应性减弱,但保留了雪貂的可传播性。Proc Natl Acad Sci U S A 117:8593-8601。11。Chesnokov A,Patel MC,Mishin VP,De La Cruz JA,Lollis L,Nguyen HT,Dugan V,Wentworth DE,Gubareva LV。2020。季节性流感A病毒的复制适应性,对Baloxavir的敏感性降低。J Infect DIS 221:367-371。 12。 Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。J Infect DIS 221:367-371。12。Kiso M,Yamayoshi S,Murakami J,Kawaoka Y. 2020。 Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。Kiso M,Yamayoshi S,Murakami J,Kawaoka Y.2020。Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。 J Infect Dis 221:1699-1702。 13。 Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。Baloxavir Marboxil治疗感染了流感病毒的裸小鼠。J Infect Dis 221:1699-1702。13。Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。 J Infect DIS 222:121-125。 14。 J Infect DIS 221:63-70。 15。 2020。 16。Sato M,Takashita E,Katayose M,Nemoto K,Sakai N,Hashimoto K,HosoyaM.2020。J Infect DIS 222:121-125。14。J Infect DIS 221:63-70。15。2020。16。在2018-2019流感季节治疗流感A的儿童后,检测Baloxavir Marboxil易感性降低的变体。Checkmahomed L,M'Hamdi Z,Carbonneau J,Venable MC,Baz M,Abed Y,Boivin G.2020。抗性抗性聚合酶酸I38T取代对当代流感A(H1N1)PDM09和A(H3N2)菌株的适应性的影响。Imai M, Yamashita M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Kiso M, Murakami J, Yasuhara A, Takada K, Ito M, Nakajima N, Takahashi K, Lopes TJS, Dutta J, Khan Z, Kriti D, van Bakel H, Tokita A, Hagiwara H, Izumida N,Kuroki H,Nishino T,Wada N,Koga M,Adachi E,Jubishi D,木谷H,Kawaoka Y.流感A的变体降低了对日本患者分离的Baloxavir敏感性的变体,并通过呼吸道液滴进行拟合。NAT微生物5:27-33。 Takashita E, Kawakami C, Morita H, Ogawa R, Fujisaki S, Shirakura M, Miura H, Nakamura K, Kishida N, Kuwahara T, Mitamura K, Abe T, Ichikawa M, Yamazaki M, Watanabe S, Odagiri T, On Behalf Of The Influenza VirusNAT微生物5:27-33。Takashita E, Kawakami C, Morita H, Ogawa R, Fujisaki S, Shirakura M, Miura H, Nakamura K, Kishida N, Kuwahara T, Mitamura K, Abe T, Ichikawa M, Yamazaki M, Watanabe S, Odagiri T, On Behalf Of The Influenza Virus
在哈佛医学院的博士后职位,学生和技术人员立场即时,学生或技术人员职位。我们的实验室重点介绍了干细胞生物学与免疫学之间的新界面,称为“茎免疫学”。我们小组的一份手稿最近被本质上被接受(在出版社中接受; 2024年11月; https://doi.org/10.21203/rs.3.rs-2469338/v1)。尽管肿瘤免疫疗法和干细胞移植的应用不断增长,但干细胞与免疫系统之间的相互作用尚不清楚。尚不清楚免疫系统如何控制干细胞。在很大程度上尚不清楚如何控制对正常或恶性细胞的免疫反应。朝着新的“茎免疫学”中的此类问题,富士崎博士的小组测试了干细胞的专门微环境是否称为干细胞生态位,是干细胞的免疫学庇护所。从理论上讲,这将屏蔽正常/恶性/移植的干细胞免受免疫攻击,以及来自细胞应激反应。在1950年代证明了睾丸和胎盘作为免疫特权部位,即使在没有免疫抑制的情况下,移植的同种异体(allo-)或异类移植物也可能会持续长期。尽管最近在各种组织中鉴定出组织的干细胞壁ni,但在免疫学环境中尚未评估小众本身。几乎不知道体细胞壁ni是否具有广泛的免疫特权。成功的博士后研究员的候选人将获得博士学位。和/或M.D.学位。我们最近证明,骨髓内的造血干细胞(HSC)壁ne可容纳独特的调节性T细胞种群,该细胞群具有易裂免疫特权(细胞干细胞22,445-453,2018;自然474(7350),216-9-9,216-9,2011)。我们在自然界中的最新手稿(2024年11月,在新闻界接受)进一步确定了高度免疫特权,高度原始的HSC和其他HSC;由高度免疫保护壁ches屏蔽,在不同的BM生态位位置。我们证明了高级一氧化氮(NO)生成的HSC对免疫攻击难治。并展现出独特的“像睡美人一样的晚期升起”,但坚固而长期的血液重建。如此高度免疫特异性,高原始的无hscs位于地层中的独特内接毛细管处,其特征是高水平的免疫接收分子CD200,原发性纤毛,原发性纤毛和分子/表型特征是血管发芽的血管发育特征。这些专门的毛细血管通过创新的纤毛蛋白IFT20/CD200/eNOS/自噬轴控制NO HIS的再生功能。毛细血管进一步维持了小裂treg的池大小,增强了无hscs的免疫特权。值得注意的是,免疫力较低,效力较低,没有低HSC在先前描述的利基成分,正弦或型H血管上共定位。这些观察结果证明了HSC和不同的BM壁ni中的新型分层结构,这既决定了再生功能和免疫耐受性。我们正在寻找对我们现在在以下方式中扩展了该创新项目:干细胞/利基调节;自我耐受; Treg生物学;不同外围器官中的干细胞;和癌症。使用多种实验方法,包括转基因动物模型,人类样品,RNA/TCR测序,空间转录组学和插入式两光子显微镜。候选人更喜欢(但不需要)在以下领域之一中具有专业知识:干细胞生物学;免疫学;癌症生物学; RNA/DNA测序; T细胞受体测序;细胞重编程;和计算生物学。