去年的引言,东盟和日本与建立东盟 - 日本综合战略伙伴关系庆祝了他们对话关系成立50周年。这种关系的发展,最初被第二次世界大战期间日本的占领和暴行的痛苦记忆所掩盖,以及对1960年代和1970年代日本经济扩张的关注,其特征在于,其特征是深层的战略信任和相互依存的依赖性,这是一个了不起的成就。由于东南亚的前瞻性和务实的方法,这种转变已成为可能,该方法优先考虑其安全和发展需求,而不是过去的创伤。它也经过数十年的日本战略保证,经济订婚和持续的努力,成为一个坚定的朋友和一个好邻居。1在这一旅程中的一个里程碑是福生学说,它为日本与东南亚的当代关系奠定了基础。在1977年发起的反日情绪中,该学说诺言旨在日本追求和平与放弃军事统治,支持区域经济增长,并促进与东南亚国家的“心对心”平等伙伴关系。2今天,日本在东南亚的公众和精英圈中享有最高水平的信任,超过了所有其他主要大国。3这个成就归因于几个因素。第二,日本通过其投资,贸易关系和发展援助是东南亚经济上升的重要贡献。这些联系在历史上从未如此深刻。首先,日本通过积极参与和支持东盟多边主义及其成员国来塑造区域秩序,发挥了至关重要的作用,在美国脱离该地区的脱离,忽视或分散注意力的时期内,是稳定的力量。它是该地区最大的官方发展援助(ODA)提供商,该地区是其第四大贸易伙伴,以及其外国直接投资(FDI)的最佳来源。4另一个至关重要但经常被忽视的因素是日本和东南亚人之间人与人之间的联系的强度。自从福生学说以来,关系中的“心对心”维度不仅在政府间层面上实现,而且在社会和人际关系互动的更广泛的结构上也实现。5本文在三个维度上探讨了日本和东南亚之间不断扩展的人类联系,即(i)劳工合作; (ii)教育和人力资源发展; (iii)旅游和文化流动。认为,这些联系将为日本 - 南亚关系带来新的势头。值得注意的是,这些人的关系强调了东南亚对日本的重要性,超越了其作为日本产品和公司的市场和生产基地的传统作用。该地区正在成为维持日本经济增长的替代资源的水库,这表明双方之间朝着更加平衡和相互伙伴关系的转变。日本人口为1.224亿越来越多的共生劳动关系超出了贸易,援助和投资,日本和东南亚之间的共生大大扩展到劳动力部门。东南亚已成为日本越来越重要的劳动力,这种劳动力一直在应对由于人口老龄化和劳动力而造成的经济挑战。
本研究评估了标准审查时间间隔与标准动态的关系。确定审查标准的最佳间隔有助于创造新的产品市场。本研究收集并分析了约 15,000 项有效或已撤销的法律标准的数据,得出了几个结论。首先,标准审查的有效时间间隔因标准所处的技术领域而异。其次,标准的类型(尤其是设计和符号标准)也会显著影响标准审查的有效时间间隔。第三,审查类型(例如修订)与标准的有效期限密切相关。这些发现有助于验证一个数学模型,该模型可以解释标准价值的动态。该模型可以分析标准的价值与应接受的审查类型之间的关系。该模型具有一个临界值,可以统一解释事实上的标准和法律标准在标准动态方面的情况。关键词 :法定标准、有效期限、标准类型、审查类型、动态 JEL :O30、O31、O34、L15。本研究由日本经济产业研究所 (RIETI) 开展。作者还感谢
教授。 J.L. Casti(美国圣达菲研究所) C.G.兰顿(美国圣达菲研究所) W.B.Arthur教授(美国圣达菲研究所) J.M. Epstein教授(美国布鲁金斯学会) S. Rasumussen教授(美国圣达菲研究所) T.S.Ray 博士(ATR,日本) T.Gomi教授(AAI,加拿大) M. Raibert 教授(美国麻省理工学院) C. Looney(大学) A.P. Wang教授(美国亚利桑那州立大学); H.H. Natsuyama教授(美国加州州立大学) R.E.(大学)) W.R.威尔斯(大学) D.J.G. 詹姆斯:; (英国考文垂大学)Prof. W.R.威尔斯(大学) Y.G.Zhang教授(中央研究院、CffiNA) J.J. Lee 教授(韩国科学技术院) G.I.Marchuk 教授(俄罗斯科学院:;, 俄罗斯) S.Ueno 教授(日本京都计算机学院) S.Fujimura教授(日本东京大学) H.Miura(日本东京大学) S.Arimoto教授(日本东京大学) Y.Nishikawa教授(日本京都大学) S. Kitamura 教授(日本神户大学) K.Tsuchiya(日本京都大学) T.Jinzenji教授(日本东北大学) K.Abe(日本东北大学)H.Hagiwara(日本京都计算机学院) H.Tanaka 教授(日本东京医科齿科大学) T.Mushya 教授(日本东京理科大学) T. Fukuda 博士(日本名古屋大学) K.Mastuno 博士(日本通产省、产业技术省) K.Tamura(日本通产省、产业技术省) Y.Tokura博士(ATR,日本) K.Shimohara博士(ATR,日本) K.Kyuma(日本三菱电机) T. Yamakawa 教授(日本九州工业大学) T.Nagata(日本九州大学) M.Nakamura 教授(日本佐贺大学) H.Kashiwagi(日本熊本大学)Prof .M.Sugisaka(日本大分大学)(主席)
###有关这项研究的更多信息,请参见“直接模拟和机器学习结构识别揭示软马心和孪生动态”,Jun-Ichi Fukuda和Kazuaki Z. Takahashi,PNAS,doi:自1911年成立以来,以研究为导向的高等教育机构。京都大学的世界一流研究中心拥有约19,000名学生和8,000名教职员工,涵盖了从人文和艺术到工程和医学科学的广泛研究领域和研究领域。它的多个校园(包括日本最大的校园之一)位于福冈市,这是日本九州西南部的沿海大都市,经常被排名世界上最宜居的城市,历史上被称为日本的亚洲门户。通过其2030年的愿景,Kyushu U将“通过综合知识推动社会变革”。其协同应用知识的应用将涵盖所有学术界,并解决社会中的问题,同时创新新系统,以实现更美好的未来。关于日本最大的公共研究组织之一,美国国家先进工业科学技术研究所(AIST)的重点是对日本工业和社会有用的技术的创建和实际实现,以及“弥合”创新技术种子和商业化之间的差距。为此,AIST被组织成5个部门和2个中心,这些部门将核心技术融合在一起,以发挥其全面的力量。AIST作为国家创新体系的核心和开拓性存在,在全国范围内有2300名研究人员在12个研究基地进行研究和发展,这是基于国家制定的国家战略,考虑到不断变化的创新环境。AIST还通过例如与世界各地的主要研究机构签署了综合研究合作(MOUS)的理解备忘录,从而积极建立全球网络。
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
i Mesfin YM,Cheng A,Lawrie J等人使用常规收集的电子保健数据用于后许可疫苗安全信号检测:系统评价BMJ Global Health 2019; 4:E001065。ND HHS免疫总监Molly Howell在2023年3月16日在SB 2384举行的众议院人类服务委员会举行的听证会上作证。关于进行全面的立法管理研究的可行性,豪厄尔女士说:“北达科他州卫生与公共服务部(NDHHS)无法根据联邦赠款进行研究。SB2384中所述的正式研究将需要一般资金和额外的人员。” III 2023年3月16日,来自Molly A. Howell到House Human Services委员会的电子邮件。iv 2024年3月26日,从莫莉·A·豪威尔(Molly A. Howell)到卡伦·罗尔(Karen M. Rohr)。V lai ly,Arshad F,Areia C,Alshammari TM,Alghoul H,Casajust P,Li X,Dawoud D,Nyberg F,Pratt N,Pratt N,Hripcsak G,Sustard MA,Prieto-Alhammbra D,Ryan P,Ryan P,Ryan P,Schuemie MJ。使用观察数据的当前疫苗安全性方法:Eumaeus的基本原理(在监视疫苗下评估用于不良事件的方法的方法)研究设计。前药。2022 3月22日; 13:837632。 doi:10.3389/fphar.2022.837632。PMID:35392566; PMCID:PMC8980923。vi Stroup和Teutsch,《公共卫生的统计数据》,《公共卫生问题的定性方法》(NY Oxford Press,1998)97。vii参见Lai等人以及公共卫生的统计数据,p。 110。VIIISATO S,Kawazoe Y,Katsuta T,Fukuda H.队列中的比较设计和评估能力和自控案例系列设计,用于授权后疫苗安全研究。peerj。2024 JAN 23; 12:E16780。doi:10.7717/peerj.16780。PMID:38282861; PMCID:PMC10812582。IX Steve Kirsch在MIT上的演讲,https://rumble.com/v3yovx4-vsrf-live-104-exclusive-mit-mit-spech-by- by- steve-kirsch.htmlIX Steve Kirsch在MIT上的演讲,https://rumble.com/v3yovx4-vsrf-live-104-exclusive-mit-mit-spech-by- by- steve-kirsch.html
心肌已经进化为有节奏的方式收缩,以从心脏向身体提供血液。心肌的机械活性起源于肉瘤,由三个纤维组成[即厚而薄的纤维和薄的纤维和巨大的弹性蛋白钛(Connectin)]。心脏研究人员已经开发并应用了各种新技术,以阐明心脏中肉瘤功能的深入机理(Fukuda等,2021及其中的相关文章)。现在越来越清楚的是,肉瘤在调节心脏动态,成长和重塑的过程中起关键作用。这些特殊技术为促进顽固性心脏病的新药物提供了新的前景。生理学领域的研究主题是十本原始研究和审查论文的集合,展示了心肌生理学和病理生理学的最新研究以及未来的方向。早期,人们认为心脏肌感冒的收缩仅通过薄薄的结构变化受到调节。也就是说,在松弛条件下,肌钙蛋白(TN)和肌球蛋白(TM)复合物阻断肌球蛋白与肌动蛋白的结合(“ OFF”状态)。Following an increase in the intracellular Ca 2+ concentration ([Ca 2+ ] i ), the binding of Ca 2+ to TnC (one of the three subunits of Tn) causes displacement of Tm on thin fi laments ( “ on ” state), allowing myosin to interact with actin, and as a result, active force is generated (see Kobirumaki- Shimozawa et al., 2014 and references therein).减少在这里,重要的是,诸如Actomyosin-ADP复合物之类的强结合跨桥,消除TN-TM的抑制作用,与Ca 2+协同作用,并进一步激活薄纤维(Kobirumaki-Shimozawa等人,2014年,2014年和参考文献)。在2010年,罗杰·库克(Roger Cooke)组做出了开创性的发现,表明肌球蛋白分子可以处于ATP周转率极低的状态(Stewart等,2010)。这个小说的放松状态被广泛称为“超级省脉状态”(SRX)(例如Cooke,2011; Irving,2017; Craig andPadrón,2022年)。srx与“无序 - 删除状态”(DRX)处于平衡状态,其中肌球蛋白头靠近薄纤维,并且可以很容易地与肌动蛋白结合(例如Cooke,2011; Fusi等,2015)。
参考文献:1. SHINGRIX 处方信息。2. Kilgore PE、Kruszon-Moran D、Seward JF 等。NHANES III 中美国人的水痘:对通过常规免疫进行控制的意义。J Med Virol。2003;70 (suppl 1):S111-S118。3. Kimberlin DW、Whitley RJ。用于预防带状疱疹的水痘-带状疱疹疫苗。N Engl J Med。2007;356(13):1338-1343。4. 疾病控制与预防中心。预防带状疱疹:免疫实践咨询委员会 (ACIP) 的建议。MMWR。2008;57(RR-5):1-30。5. Mahalingam R、Wellish M、Wolf W 等。人类三叉神经节和胸神经节中潜伏的水痘带状疱疹病毒 DNA。新英格兰医学杂志。 1990;323(10):627-631。 6. Lungu O、Annunziato PW、Gershon A 等人。人类背根神经节中重新激活和潜伏的水痘带状疱疹病毒。美国国家科学院院刊。 1995;92(24):10980-10984。 7.Furuta Y、Takasu T、Fukuda S 等。聚合酶链式反应检测人膝状神经节中的水痘带状疱疹病毒 DNA。感染疾病杂志。 1992;166(5):1157-1159。 8.Weinberg A、Lazar AA、Zerbe GO 等人。年龄和原发感染性质对水痘-带状疱疹病毒特异性细胞介导免疫反应的影响。《传染病杂志》。2010;201(7):1024-1030。9. Levin MJ。免疫衰老和疫苗预防老年人带状疱疹。《免疫学最新观点》。2012;24(4):494-500。10. Chlibek R、Smetana J、Pauksens K 等。三种不同配方佐剂型水痘-带状疱疹病毒亚单位候选疫苗在老年人中的安全性和免疫原性:一项 II 期随机对照研究。《疫苗》。2014;32(15):1745-1753。 11. Patterson-Bartlett J、Levin MJ、Lang N、Schödel FP、Vessey R、Weinberg A。减毒带状疱疹疫苗体外T细胞反应的表型和功能特征。疫苗。2007;25(41):7087-7093。
参考文献:1. 美国疾病控制与预防中心。预防带状疱疹:免疫实践咨询委员会(ACIP)的建议。MMWR。2008;57(RR-5):1-30。2. Kimberlin DW、Whitley RJ。水痘-带状疱疹疫苗用于预防带状疱疹。N Engl J Med。2007;356(13):1338-1343。3. Levin MJ。免疫衰老和疫苗预防老年人带状疱疹。Curr Opin Immunol。2012;24(4):494-500。4. Kilgore PE、Kruszon-Moran D、Seward JF 等。来自 NHANES III 的美国人水痘:对通过常规免疫控制的影响。J Med Virol。 2003;70 (suppl 1):S111-S118。5. Chlibek R、Smetana J、Pauksens K 等人。三种不同配方佐剂水痘-带状疱疹病毒亚单位候选疫苗在老年人中的安全性和免疫原性:一项 II 期随机对照研究。疫苗。2014;32(15):1745-1753。6. Patterson-Bartlett J、Levin MJ、Lang N、Schödel FP、Vessey R、Weinberg A。减毒活疫苗体外 T 细胞应答的表型和功能特征。疫苗。2007;25(41):7087-7093。7. Weinberg A、Lazar AA、Zerbe GO 等人。年龄和原发感染性质对水痘带状疱疹病毒特异性细胞介导的免疫反应的影响。感染疾病杂志。 2010;201(7):1024-1030。 8. Mahalingam R、Wellish M、Wolf W 等人。人类三叉神经节和胸神经节中潜伏的水痘带状疱疹病毒 DNA。新英格兰医学杂志。 1990;323(10):627-631。 9. Lungu O、Annunziato PW、Gershon A 等人。人类背根神经节中重新激活和潜伏的水痘带状疱疹病毒。美国国家科学院院刊。 1995;92(24):10980-10984。 10.Furuta Y、Takasu T、Fukuda S 等。通过聚合酶链式反应检测人类膝状体神经节中的水痘-带状疱疹病毒 DNA。J Infect Dis 。1992;166(5):1157-1159。11. Kawai K、Gebremeskel BG、Acosta CJ。带状疱疹发病率和并发症的系统评价:面向全球视角。BMJ Open 。2014;4(6):e004833。12. SHINGRIX 的处方信息。13. Yawn BP、Saddier P、Wollan PC、St. Sauver JL、Kurland MJ、Sy LS。带状疱疹疫苗引入前带状疱疹发病率和并发症率的人群研究。Mayo Clin Proc 。2007;82(11):1341-1349。14. 疾病控制和预防中心。免疫实践咨询委员会关于使用带状疱疹疫苗的建议。MMWR。2018;67(3):103-108。15. Managed Markets Insight & Technology, LLC,截至 2020 年 9 月的数据库。16. 医疗保险和医疗补助服务中心。联邦医疗保险 D 部分疫苗。https://www.cms.gov/Outreach-and-Education/Medicare- Learning-Network-MLN/MLNProducts/Downloads/Vaccines-Part-D-Factsheet-ICN908764.pdf。2019 年 6 月更新。2020 年 5 月 14 日访问。17. Cunningham AL、Lal H、Kovac M 等人,ZOE-70 研究组。带状疱疹亚单位疫苗对 70 岁或以上成人的疗效。N Engl J Med。 2016;375(11):1019-1032。18. Lal H, Cunningham AL,Godeaux O 等人,代表 ZOE-50 研究组。佐剂型带状疱疹亚单位疫苗对老年人的疗效。N Engl J Med。2015;372(22):2087-2096。
5 TS Böscke、J Müller、D Bräuhaus、U Schröder 和 U Böttger,《应用物理快报》99 (10), 102903 (2011)。 6 Uwe Schroeder、S Mueller、Johannes Mueller、Ekatarina Yurchuk、D Martin、Christoph Adelmann、Till Schloesser、Ralf van Bentum 和 Thomas Mikolajick,ECS 固体科学与技术杂志 2 (4),N69 (2013)。 7 H Alex Hsain、Younghwan Lee、Gregory Parsons 和 Jacob L Jones,《应用物理快报》116 (19)、192901 (2020)。 8 Johannes Muller、Tim S Boscke、Uwe Schroder、Stefan Mueller、Dennis Brauhaus、Ulrich Bottger、Lothar Frey 和 Thomas Mikolajick,《纳米快报》12 (8),4318 (2012)。9 Yuh-Chen Lin、Felicia McGuire 和 Aaron D Franklin,《真空科学与技术 B 期刊》,《纳米技术和微电子学:材料、加工、测量和现象》36 (1),011204 (2018)。10 Justin C Wong 和 Sayeef Salahuddin,《IEEE 会议纪要》107 (1),49 (2018)。 11 C Zacharaki、P Tsipas、S Chaitoglou、EK Evangelou、CM Istrate、L Pintilie 和 A Dimoulas,《应用物理快报》116 (18), 182904 (2020)。 12 Zoran Krivokapic、U Rana、R Galatage、A Razavieh、A Aziz、J Liu、J Shi、HJ Kim、R Sporer 和 C Serrao,在 2017 年 IEEE 国际电子器件会议 (IEDM) 上发表,2017 年(未发表)。 13 Shen-Yang Lee、Han-Wei Chen、Chiuan-Huei Shen、Po-Yi Kuo、Chun-Chih Chung、Yu-En Huang、Hsin-Yu Chen 和 Tien-Sheng Chao,IEEE 电子器件快报 40 (11), 1708 (2019)。 14 Sujay B Desai、Surabhi R Madhvapathy、Angada B Sachid、Juan Pablo Llinas、Qingxiao Wang、Geun Ho Ahn、Gregory Pitner、Moon J Kim、Jeffrey Bokor 和 Chenming Hu,Science 354 (6308), 99 (2016)。15 Amirhasan Nourbakhsh、Ahmad Zubair、Redwan N Sajjad、Amir Tavakkoli KG、Wei Chen、Shiang Fang、Xi Ling、Jing Kong、Mildred S Dresselhaus 和 Efthimios Kaxiras,Nano letters 16 (12), 7798 (2016)。16 Felicia A McGuire、Zhihui Cheng、Katherine Price 和 Aaron D Franklin,Applied Physics Letters 109 (9), 093101 (2016)。 17 Felicia A McGuire、Yuh-Chen Lin、Katherine Price、G Bruce Rayner、Sourabh Khandelwal、Sayeef Salahuddin 和 Aaron D Franklin,《Nano Letters》17 (8),4801 (2017)。18 Yuh-Chen Lin、Felicia McGuire、Steven Noyce、Nicholas Williams、Zhihui Cheng、Joseph Andrews 和 Aaron D Franklin,《IEEE 电子设备学会杂志》7,645 (2019)。19 Mengwei Si、Chun-Jung Su、Chunsheng Jiang、Nathan J Conrad、Hong Zhou、Kerry D Maize、Gang Qiu、Chien-Ting Wu、Ali Shakouri 和 Muhammad A Alam,《自然纳米技术》13 (1),24 (2018)。 20 Amirhasan Nourbakhsh、Ahmad Zubair、Sameer Joglekar、Mildred Dresselhaus 和 Tomás Palacios,纳米尺度 9 (18), 6122 (2017)。 21 Girish Pahwa、Amit Agarwal 和 Yogesh Singh Chauhan,IEEE Transactions on Electron Devices 65 (11), 5130 (2018)。 22 Daewoong Kwon、Korok Chatterjee、Ava J Tan、Ajay K Yadav、Hong Zhou、Angada B Sachid、Roberto Dos Reis、Chenming Hu 和 Sayeef Salahuddin,IEEE 电子设备快报 39 (2)、300 (2017)。 23 Daewoong Kwon、Suraj Cheema、Nirmaan Shanker、Korok Chatterjee、Yu-Hung Liao、Ava J Tan、Chenming Hu 和 Sayeef Salahuddin,IEEE Electron Device Letters 40(6),993 (2019)。 24 Junichi Hattori、Koichi Fukuda、Tsutomu Ikegami、Hiroyuki Ota、Shinji Migita、Hidehiro Asai 和 Akira Toriumi,《日本应用物理学杂志》57(4S),04FD07 (2018)。