该出版物报告了使用氧化化学蒸气沉积(OCVD)方法制造的聚(3,4-乙二醇)(PEDOT)薄膜中载体迁移率的主要增强。通过采用纳米结构工程,研究团队成功地优化了π-π堆积距离,从而实现了准二维(1D)电荷传输途径。这些进步导致了载流子的迁移率和热电性能,证明了OCVD制作的PEDOT薄膜用于下一代能量和电子应用的多功能潜力。这一显着的成就是M.S.出色的研究贡献的结果。学生Brian Dautel和Ph.D.学生Kafil Chowdhury,在Meysam博士在AMED实验室的监督下。
研究已提供证据表明,人类脑类器官 (hCO) 重现了早期大脑发育的基本里程碑,但关于其功能和电生理特性的许多重要问题仍然存在。高密度微电极阵列 (HD-MEA) 是一种有吸引力的分析平台,可用于在细胞和网络规模上进行神经元网络的功能研究。在这里,我们使用 HD-MEA 从切片 hCO 中获取大规模电生理记录。我们记录了几周内 hCO 切片的活动,并从药理学角度探究观察到的神经元动态。此外,我们还展示了如何对获得的记录进行尖峰分类并随后进行跨尺度研究的结果。例如,我们展示了如何在 HD-MEA 上跟踪几天内的单个神经元以及如何推断轴突动作电位速度。我们还从 hCO 记录中推断出假定的功能连接。引入的方法将有助于更好地理解脑类器官中正在发育的神经元网络,并为它们的功能表征提供新方法。
○业务计划该项目着重于研究和开发GMS(石墨烯Messponge)的应用,这是Tohoku University发明的创新碳材料,是锂离子电池(LIB)的导电添加剂。我们旨在应对缺乏结构可控性的常规碳材料难以解决的锂离子电池的关键设计挑战。通过利用GM,这可以实现精确的结构控制,我们将其发展为功能性导电添加剂。
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
生成AI在纳米复合材料的开发中的整合通过实现量身定制的功能彻底改变了该领域。这种创新方法利用机器学习算法设计和优化具有特定特性的纳米复合结构。通过生成纳米复合构型的庞大虚拟库,生成的AI加速了具有增强的机械,热和电气性能的新型材料的发现。本摘要概述了生成AI驱动的纳米复合材料设计中最新的最新概述,强调了其改变能源,航空航天和生物医学等行业的潜力。我们探索了这个新兴领域的挑战和机遇,强调了生成AI在纳米复合材料中解锁前所未有的功能的潜力。
博士Prasenjit Saikia 博士阿吉特·辛格博士Biswajit Saha 博士P. Yuvaraj 先生帕萨·马宗德博士Hridoy Jyoti Mahanta 博士Pankaj Bharali 博士Tridip Phukan 博士Romi Wahengbam 博士Saikat Haldar 博士奥雅纳罗伊博士百夏凛空博士Atul Ashok More 博士Leon Raj 博士Pravin G. Ingole 博士吉滕德拉·辛格·维尔马博士萨钦吉德先生Dhanjit Das 博士Jyoti Kumar Doley 博士Biswajit Gogoi 博士Debasis D. Mohanty 博士Hemanta Sankar Dutta 博士Jayashi Phukan 博士桑迪普·戴伊先生Rama Shankar Sharma先生JL Khongsai 先生Vaskar Rajkhowa先生Praveen Mohan Verma 先生希玛塔·萨基亚
1索邦大学,CNRS,Villefranche海洋学(LOV),Villefranche-Sur-Mer,法国2 AIX Marseille Univ。 (Lemar)UMR 6539 CNRS UBO IRD IFREMER,欧洲大学海洋研究所,西布列塔尼大学,普卢赞奈大学,法国普鲁赞奈5个系统研究所,进化论,生物多样性(ISYEB),国家自然历史学博物馆,苏联大学,萨尔伯纳大学,埃弗斯,帕里斯,帕里斯,帕里斯,法兰斯,科学杂志。 Trondhjem Biologication,Trondheim,挪威7 Quebec-Ocean和International Mixed International Munder Takuvik ulaval-CNRS,生物学系,Laval University,Quebec City,Quebec,QUEBEC,加拿大QUEBEC 8 Sorbonne University,CNR,CNRS,CNRS,ROSCOFF,ROSCOFF,FRANCE,FRANCE,FRANCE SCICENCE,QUEBECEFRESS,QUEBECH SACICENT,ROSTARITY和多样性法国法国大学法国大学11地球与环境科学科,系,F.-A。瑞士日内瓦大学环境科学的环境和水生科学研究所12里奇,苏黎世,苏黎世,苏黎世瑞士瑞士日内瓦大学环境科学的环境和水生科学研究所12里奇,苏黎世,苏黎世,苏黎世瑞士
摘要:认可采用环保生物降解塑料作为对塑料污染规模的回应的措施,这对来自自然的材料的创新产品产生了需求。离子液体(ILS)具有破坏生物聚合物的氢键网络,增加生物聚合物链的迁移率,减少摩擦并产生具有各种媒介和机械性能的材料。由于这些品质,IL被认为是增塑生物聚合物的理想选择,使它们能够满足生物聚合材料的广泛规格。该迷你审查讨论了不同的IL塑料对由各种生物聚合物(例如淀粉,壳聚糖,藻酸盐,纤维素)制成的材料的加工,拉伸强度和弹性的影响,并特别涵盖了IL塑料包装材料和生物医学和成型化学物质的材料。还讨论了针对IL生物聚合物的基于IL的增塑剂中的挑战(成本,规模和生态友好性)和未来的研究方向。
这篇文章基于28个月的数字自动人口研究研究。我的研究方法包括在面对面环境和数字民族志上的传统人种志研究,但我的个人经验也嵌入了工作中。在这篇文章中,您会发现“插曲”,这些插曲可以瞥见我的康复之旅。在本公共志上写作时,我提供了我如何经历疾病和康复的“厚实描述” 1(Geertz 3)。通过包括我自己的故事,我承认观察者和观察者是密不可分的。所有民族志都是关系的。民族志数据是由民族志学家和参与者之间的信任关系产生的。此外,在自发人口志上,研究人员将民族志镜头转向了自己。i扩大了进行民族志的潜在目的,包括个人康复和康复。这些“插曲”证明了功能医学患者的风险;添加(自动)人种学纹理;和序言我关于嵌套生态,社会微生物组,特权以及健康和食品正义的论点。
功能分级的材料(FGM)是新一代的工程材料,其中微结构细节通过增强阶段的非均匀分布在空间上变化,请参见顶部图。工程师通过使用具有不同属性,大小和形状的增强件以及以连续的方式互换增强和矩阵阶段的作用(参考1)。结果是一个微观结构,该微观结构在宏观或连续尺度上产生连续或离散变化的热和机械性能。这一新的工程材料的微观结构的概念标志着材料科学和材料领域机制中革命的开始,因为它首次允许一个人将材料和结构上的考虑因素完全整合到结构组件的最终设计中。功能分级的材料是涉及严重热梯度的应用的理想候选物,从高级飞机中的热结构和