5S-1 3 0 5S-2 3 0 5S-4 3 0 5S-5 3 0 5S-6 3 3 3 5S-7 3 2 5S-7 3 2 5S-10 3 3 Polii-5 3 0 Polii-5 3 0 Polii-6 3 0 Polii-6 3 0 Polii-6 3 0对照培养物Ama1-A y y ama1-a y y ama1-a y ama1-a y ama1-y y ama1-y y ama y y y y y y wt y x y x y x rristial in x ristial(from in x grormycin(pda)pda(pda) PKS12基因变体使用先前在非选择性培养基上维持的两种培养基的培养物中的接种物。显示了每种变体的3个同基因线的结果。变体。用表达MEGFP的AMA1载体转化的对照培养物(AMA1-A和AMA1-B)在选择培养基上保持了几种培养物和生长的选择培养基,每种培养培养基的三个重复用Y(增长)或X表示(无增长)。
抗菌药物用于抑制和管理动植物中的传染病。当细菌不再对抗菌药物反应导致疾病的威胁延伸,可怕的感染,无能为力和到期时,就会发生抗菌耐药性(AMR)。AMR是一种通常的程序,它逐渐涉及微生物的遗传变化。人类相互作用,特别是对菌丝体调节动植物中疾病的不当利用可促进其建立和传播。在本研究中,检查了根际真菌的甲醇提取物的抗氧化剂和抗菌活性。The two rhizospheric fungal species, Fusarium incarnatum and Aspergillus ochraceous , were distinguished on the basis of distinct and microscopic features.通过技术气相色谱 - 质谱法(GC-MS)检查了上面根际真菌的51种化合物。与鳄鱼皮曲霉相比,与大肠杆菌相反,与大肠杆菌相反,与大肠杆菌和26毫米的枯草芽孢杆菌相反。在硅对接研究中进一步显示,针对四环素的所有化合物(即4.95 kcal/mol),在-6.3 kcal/mol至-3.9 kcal/mol之间的结合能,这是食品和药物管理局(FDA)的抗菌药物认可的药物之一。
用于微生物专门代谢物的超临界液提取(SFE)方法在文献中非常稀少,限于液体培养。我们在这里提出了一种新的样品制备方法,以实现固态培养的专门代谢物的SFE。sfe参数,包括CO 2压力,提取细胞的温度和共溶剂的百分比,在核核酸菌群SNB-CN111的固态培养物(一种产生Azaphilone copments的丝状真菌)的情况下进行了优化。然后通过逆期液相色谱法与电喷雾电离和串联质谱法分析提取物的代谢组成。由METGEM软件产生的产生的分子网络允许在不同条件下提取的代谢产物的注释,从而根据Azaphilone亚家族的极性证实了裂缝的富集。首先,100%CO 2的分数比己烷浸渍高十倍,SFE方法的优化导致提取的产量是将CO 2与乙醇混合在一起时的两倍高,是乙醇2的高度,并且表明CO 2 /乙醇SFE是比标准浸润方法更环保和高效的量,以使其对Azaphilo-neSes的萃取相比。
schizophyllum cumine是一种蘑菇形成的真菌,以其独特的结实物体具有分裂的g。它被用作研究蘑菇发育,木质纤维素降解和交配类型基因座的模型生物。这是一种高变量物种,菌株之间具有相当大的遗传和表型多样性。在这项研究中,我们系统地表现出16种硫化菌株,用于蘑菇发育方面和木质纤维素降解的18个单被子菌株。有关这些表型的菌株之间存在相当大的异质性。大多数菌株发展出具有不同形态的蘑菇,尽管有些菌株仅在经过测试的条件下营养生长。各种碳源上的生长显示出特异性特异性曲线。对七个单因子菌株的基因组进行了测序,并与六个前发表的基因组序列进行了分析。此外,对相关的物种进行了schizophyllum fasciatum。尽管基因组组件之间存在很大的遗传变异,但与蘑菇形成和木质纤维素降解有关的基因得到了很好的保守。这些测序的基因组与高表型多样性相结合,将为S. comuncom菌株的功能基因组学分析提供扎实的基础。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
摘要:Aspergillus oryzae是一种浮雕的真菌,已用于传统的日本酿酒行业,例如清酒,酱油和味o味生产。此外,绿曲霉已被用于异源蛋白质的产生中,并且该真菌由于能够通过引入外国生物合成基因而产生大量异源天然产物,因此该真菌最近被用于生物合成研究。遗传操作在绿曲霉的功能发展中很重要,主要限于野生应变rib40,这是一种适用于实验室分析的基因组参考。但是,有许多具有各种专业特征的A. oryzae的工业酿造菌株,并且根据各种目的所需的特性选择性地使用它们,例如清酒,酱油和味o的生产。自2000年代初以来,已经开发了基因组编辑技术;在这些技术中,转录激活效应效应子核酸酶(Talens)和定期插入的短期短质体重复序列/CRISPR-相关蛋白9(CRISPR/CAS9)已应用于A. oryzae的基因修饰。值得注意的是,CRISPR/CAS9系统已经显着提高了A. oryzae工业菌株基因修饰的效率。在这篇综述中,总结了基因组编辑技术及其在A. Oryzae中的应用潜力的发展。
Loranthus europseus (plant / midgetoe) Biscogniaxia Mediterranea (Fungus) Obolarina Peaches (Fungus), Krawtzewii (Fungus) epicoccum black (fungus) Chaetomium (fungus) Kalmusia variispora (fungus) Petriella dirty (fungus) NeocaMarosporium Obiones (真菌)Sordaria Fimicola(真菌)Paecilomyces Fair(真菌)Phaeoacremonium Tuscanicum(Fungus)Ocean(真菌)Armillaria Mellea(真菌)Dematophora sp。 div> (蘑菇)fusarium sp。 div> (蘑菇)替代属。 div> (蘑菇)植物菌(卵骨)pythium(Oomycetes)Megopis scabrigornis(昆虫)(昆虫)acmaeodera(昆虫)laimaphelenchus(nematode)l. hyrcanus(nematode)l. B. Roseae亚种 div> 玫瑰(细菌)stenotrophomonas一个友好(细菌) div> div>Loranthus europseus (plant / midgetoe) Biscogniaxia Mediterranea (Fungus) Obolarina Peaches (Fungus), Krawtzewii (Fungus) epicoccum black (fungus) Chaetomium (fungus) Kalmusia variispora (fungus) Petriella dirty (fungus) NeocaMarosporium Obiones (真菌)Sordaria Fimicola(真菌)Paecilomyces Fair(真菌)Phaeoacremonium Tuscanicum(Fungus)Ocean(真菌)Armillaria Mellea(真菌)Dematophora sp。 div>(蘑菇)fusarium sp。 div>(蘑菇)替代属。 div>(蘑菇)植物菌(卵骨)pythium(Oomycetes)Megopis scabrigornis(昆虫)(昆虫)acmaeodera(昆虫)laimaphelenchus(nematode)l. hyrcanus(nematode)l. B. Roseae亚种 div>玫瑰(细菌)stenotrophomonas一个友好(细菌) div> div>
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
抽象的Verticillium枯萎病是由土壤 - 传播真菌dahliae kleb。引起的,对全球橄榄(Olea Europaea L.)构成了重大威胁。本综述提供了对疾病及其管理策略的深入理解。包括各种致病型和种族的Dahliae的遗传多样性对毒力和宿主相互作用具有影响。真菌会影响广泛的宿主范围,包括农作物和树木。V. Dahliae负责许多症状,例如枯萎,黄色,发育迟缓,坏死和血管变色。由这种病原体造成的经济后果包括产量损失,低质量的橄榄油,市场限制和增加的生产成本。Verticillium Wilt在温暖的温度和过多的土壤水分中蓬勃发展。化学和生物控制和文化实践被评估为潜在措施。但是,寻找耐药品种是一个重要的解决方案。本综述的见解强调了对管理橄榄性枯萎病的跨学科方法的必要性。综合疾病管理策略,耐药品种和可持续实践作为控制疾病控制的关键方法。