问题:由土壤传播真菌fusari-um oxysporum f引起的香蕉巴拿马疾病(或镰刀菌)的毁灭性疾病。 sp。cubense(foc),具有破坏香蕉生产的悠久历史。在1962年左右,发现Cavendish品种可以抵抗镰刀菌的菌株,并在出口市场中取代了Gros Michel(Ploetz,2015年)。然而,一种新的菌株,焦点热带种族4(focTR4)已成为对热带地区卡文迪什香蕉的重大威胁(Ghag等,2015)。在越南,FOC TR4于2017年首次报道,影响了北部省份的Cavendish香蕉(Hung等,2018)。现在,它已成为越南香蕉上最危险的疾病(图1.A)。这已经提出了有关该国香蕉生产的未来以及依赖这种农作物的农民的生产的情况。
萨摩亚的生物多样性和自然资源为该国的身体,文化,社会和经济福祉提供了生态基础。它提供食物,纤维,燃料,淡水,药用植物和建筑材料。这是一个例证的,大约80%的人口(在很大程度上生存)直接取决于土地和海洋的食物和收入。虽然农业过去是萨摩亚经济的骨干,但其下降很大程度上是由于塔罗叶枯萎病引起的塔罗出口剂,这是一种致命的非本地真菌,导致了萨摩亚塔罗的灭绝。对萨摩亚的生物多样性施加了许多压力,其中一个重要的是入侵物种,其影响在财务,生态和文化上都是广泛且昂贵的,包括对农业,林业和渔业等初级行业的生产率和经济产量的影响,包括对综合性和生物的综合性和生物学的综合性及其综合性的效果。
抽象的酿酒酵母是最早的驯化真菌,深入研究了真菌。当用于食品发酵时,酿酒酵母对产品的质量,风味和香气有重要影响。未来的发展将集中于增强风味多样性,提高生产效率,可持续性和产品一致性,并通过使用先进技术来提高发酵特性。糖疗法是合成生物学研究的理想底物,通常用于乳酸,萜烯,类固醇,疫苗等的生产,有助于降低生产成本,缩短生产周期,提高生产能力,并具有非常广泛的应用程序前景。此外,在环境保护领域,生物燃料乙醇是具有能源和环境安全潜力的有前途且受欢迎的燃料之一。然而,使用木质纤维素生物量作为产生生物燃料乙醇的酿酒酵母面临着重大挑战。
入侵物种是现在发生在其自然范围之外并威胁着有价值的环境,农业,海洋和社会资源的物种。入侵物种包括杂草,陆地和海洋脊椎动物和无脊椎动物,以及引起疾病的生物。澳大利亚入侵物种的例子包括野猫,欧洲红狐狸,甘蔗蟾蜍,兔子,欧洲鲤鱼,chytrid真菌,默特尔锈病,默特尔锈,布法尔草和甘巴草。本地物种有时对我们的本地生物多样性也可能是有问题的 - 例如,嘈杂的矿工对其他林地鸟类社区的影响,袋鼠和袋鼠等本地过多的宏观动物的影响,以及长刺海盘对本地kelp森林的影响。侵入性和有问题的本地物种通过捕食来减少生物多样性,与本地物种竞争食物和栖息地的竞争,带来疾病以及以排除本地物种的方式改变物理环境。污染
真菌是高度多样的,并且在生态系统中执行许多关键任务,从有机物的分解到营养物质通过菌丝的易位以及土壤中遥远的壁cor的联系。但是,真菌不孤立地生活;取而代之的是,它们与植物和动物建立了密切的关联,作为其复杂的微生物群的一部分。真菌以其对大多数血管植物的基本菌根共生体的作用而闻名,以及与藻类或蓝细菌的地衣共生的作用;鲜为人知的是它们与细菌和RNA病毒的微生物共生关系[1,2]。在1970年通过显微镜观察到了真菌中的细菌性内膜[3],最近的发现表明,这些内共生细菌可以是某些真菌中突出的特征[1,4]。相比之下,大多数在1962年正式描述[5]最初对其宿主的影响(尽管有些可以减少真菌的生长和毒力)的大多数分枝病毒。根瘤菌是一个真菌的一个充分的例子,可以携带细菌和病毒内共生菌,被称为真菌霍洛比恩(图1)。根茎物种用于生产发酵食品,酶和代谢产物。仍然,它们也可能是农作物(包括草莓,地瓜和大米)的致病性,并在免疫验证的人类中引起致命感染。在其著名的特征中,有能力产生霉菌毒素,包括根茎毒素,根茎及其衍生物。另一个引人注目的分解是R的菌株。孢子形成仅随着真菌 - 细菌共生的重建而恢复[7]。有趣的是,关于根瘤菌毒素产生和非生产菌株的研究表明,参与根蛋白毒素产生的生物合成基因并不是真菌的起源。相反,所有产生根茎毒素的菌株均由细菌共生体定植,这些菌株含有能够产生根蛋白毒素的多酮化合物生物合成基因[6]。缺乏细菌共生体的微孢子不再无性繁殖并形成孢子囊和孢子囊孢子[7]。的确,细菌共生体是在孢子孢子中遗传的(图1),以确保它们向后代的传播[7]。r。Microsporus需要2个兼容伴侣(一种构成类型的阳性(MT+)和一种负型负菌株(MT-)菌株),并与Trisporic Acid(一种性激素)的协作产生,用于形成Zygospores的性激素(图1)。非常明显,
香菇是一种主要的木材分解真菌,可以在木材上培养,也可以在以锯末为基础的基质上通过无菌培养,并添加某种麸皮。目前,无菌培养系统是首选,因为它有利于工业规模的种植。在这项研究中,我们评估了使用两种配方和不同堆肥期的堆肥基质种植香菇的可行性。在堆肥基质中可以种植这种蘑菇;然而,种植的成功取决于是否使用严格的巴氏灭菌法。只有在巴氏灭菌温度为 80°C 时,堆肥基质才有利于真菌菌丝的生长。此外,经过严格巴氏灭菌的堆肥基质的生产率和生物效率与非堆肥基质的生产率和生物效率相似。最佳效果是:堆肥 6 天,然后在 80°C 下进行 12 小时的巴氏杀菌,或者堆肥 4 天,然后高压灭菌 1 小时。
牡蛎蘑菇,通常称为印度的“ Dhingri”,是一种基本菌,被归类为胸膜属的一部分。这种木质纤维素分解真菌在温带和热带森林中自然生长在死亡,腐烂的木材上。它也可以在针叶树或落叶树的干燥树干上生长。它也可以在分解的有机材料上开发(Shukla等,2011)。根据物种的不同,该蘑菇的水果体具有特征性的外壳,风扇或刮铲形状,具有多种颜色,包括白色,奶油,灰色,黄色,粉红色或浅棕色(Kamalakannan等人,2020年)。话虽如此,孢子体的颜色因底物的养分,温度和光强度而变化很大。pleurotus一词来自希腊语“ pleuro”,其意思是“横向形成”或“茎或茎的横向位置”(Kashangura等,2008)。
和库克索尼亚,这也反映了功能和形态上的真正差异。Salopella 有相当类似苔类植物的叶状体——接缝、下摆、两个配子体瓣;类似芽杯和裂片的结构——似乎仍然适合整体潮湿和群居的苔类植物摇篮栖息地。4)库克索尼亚的苔类植物要少得多(我们在它们身上也没有发现芽杯),似乎已经准备好单独旅行,至少可以去更远的地方,有水平的主根,在地面以上,利用沿途小沟和凹槽的营养水分;厚厚的角质层可以抵御干燥和通常炎热的气候,当然还有与真菌的巧妙共生(它们都有),为它们的后代在仍然贫瘠的腹地提供水分和营养必不可少的背包。这完全取决于它们的培育。这些最伟大的英雄没有后盾。世界应该每年设立一个世界植物日,以纪念这些植物的无价贡献。
摘要 本研究调查了全球 669 名植物科学家,以了解哪些物种(基因编辑的哪些结果)、哪些地方(哪个大洲)和哪些作物(哪些作物)最有可能从 CRISPR 研究中受益,以及是否就农业商业化应用的具体障碍达成共识。此外,我们还对公共和私人植物科学家进行了分类,以了解他们对 CRISPR 研究未来的看法是否存在差异。我们的研究结果表明,玉米和大豆有望从 CRISPR 技术中受益最多,而真菌和病毒抗性是最常见的实施手段。总体而言,植物科学家认为消费者的认知/知识差距是阻碍 CRISPR 应用的最大障碍。尽管 CRISPR 被誉为一种可以帮助缓解粮食不安全和提高农业可持续性的技术,但我们的研究表明,植物科学家认为消费者对 CRISPR 的看法存在一些很大的担忧。
摘要:酿酒酵母作为一种公认安全 (GRAS) 真菌,已成为工业应用和基础研究中最广泛使用的底盘细胞之一。然而,由于其复杂的遗传背景和相互交织的代谢网络,仍然有许多障碍需要克服,以改善所需特性并成功地将基因型与表型联系起来。在此背景下,基因组编辑和进化技术在过去几十年中迅速发展,以促进快速产生定制特性以及精确确定调节生理功能的相关基因靶标,包括抗逆性、代谢途径优化和生物体适应性。定向基因组进化已成为一种多功能工具,使研究人员能够获得所需特性并研究日益复杂的现象。本文回顾了酿酒酵母定向基因组进化的发展,重点介绍了推动进化工程的不同技术。
