在这些指示的指导下的位置。但是,有效地融合视觉和语言方式之间的信息仍然是一个重大挑战。为了实现自然语言和视觉信息的深入整合,本研究引入了多模式融合神经网络模型,该模型将视觉信息(RGB图像和深度图)与语言信息(自然语言导航指令)结合在一起。首先,我们使用更快的R-CNN和RESNET50来提取图像特征和注意机制,以进一步提取有效的信息。其次,GRU模型用于提取语言功能。最后,另一个GRU模型用于融合视觉语言功能,然后保留历史信息以将下一个动作指令提供给机器人。实验结果表明,所提出的方法有效地解决了机器人真空吸尘器的本地化和决策挑战。关键字:机器人真空吸尘器;视觉语言导航;多模式融合; Resnet50; gru;
摘要:无人机系统 (UAS) 航空电子设备的不断发展,为飞行器和地面任务控制带来了更高水平的智能化和自主性,从而催生了新的有前途的操作概念。一对多 (OTM) UAS 操作就是这样一个概念,它的实施需要在多个领域取得重大进展,特别是在人机界面和交互 (HMI 2 ) 领域。在 OTM 操作期间测量认知负荷,特别是心理工作负荷 (MWL) 是可取的,因为它可以减轻自动化程度提高带来的一些负面影响,通过提供动态优化航空电子 HMI 2 的能力,实现自主飞行器和人类操作员之间的最佳任务共享。本文提出的新型认知人机系统 (CHMS) 是一种信息物理人 (CPH) 系统,它利用了经济实惠的生理传感器的最新技术发展。该系统专注于生理感知和人工智能 (AI) 技术,这些技术可以支持 HMI 2 的动态调整,以响应操作员的认知状态(包括 MWL)、外部/环境条件和任务成功标准。然而,仍然存在重大的研究空白,其中之一涉及一种可以应用于 UAS 操作场景的确定 MWL 的普遍有效方法。因此,在本文中,我们介绍了一项关于测量的研究结果
与中国对 GSSAP 生命模式的其他评估相比,中国追踪 GSSAP 的能力在两个方面正在显著提高。首先,尽管西方数据有限,但中国人民解放军 (PLA) 仍能够追踪 GSSAP-3。这可能表明解放军在将其自己的 SDA 数据与西方 SDA 数据融合方面取得了进展。其次,中国航天从业者越来越有信心公开涉及 GSSAP 和中国卫星的 100 公里 (km) 范围内的方法,可能是因为他们可以借鉴解放军公开发表的研究成果。中国学者对近距离接近的评估具有前瞻性的另一个可能原因是,今年早些时候,中国实施了其空间物体轨道数据的国家标准,旨在促进更深入的国际参与。中国专家凭借自己的分析并有权公开分析,似乎正准备填补美国和国际公开论坛上关于 GSSAP 行动的国际话语空白。
单细胞测序是剖析复杂疾病的细胞复杂性的关键工具。其过于良好的成本会阻碍其在广泛的生物医学研究中的应用。传统的细胞反卷积方法可以从更负担得起的散装测序数据中推断出细胞类型比例,但它们在提供单细胞级分析所需的详细分辨率方面却缺乏。为了克服这一挑战,我们介绍了“ SCSemiprofiler”,这是一个创新的计算框架,将深层生成模型与主动学习策略结合。这种方法通过将批量测序数据与来自一些严格选择的代表的靶向单细胞测序融合,从而在大型队列中熟练地侵入单细胞轮廓。跨越异质数据集的广泛阀门验证了我们的半封装方法的精度,与真实的单细胞分析数据紧密一致并赋予精致的细胞分析。最初是为广泛的疾病队列开发的,“ scsemiprofiler”适用于广泛的应用。它为单细胞分析提供了可扩展的,具有成本效益的解决方案,促进了各种生物领域的深入细胞研究。
摘要:水是生命的秘诀,占地70%以上。必须保护我们周围的水资源免受污染和忽视,这可能导致生命和健康丧失。人工智能(AI)有可能改善水质分析,预测和监测系统,以进行可持续和环保的水资源管理。因此,这项工作着重于代表水状态并确定其适用性类别(即安全或不安全)的多模型学习功能。这是通过在融合其异常值后在监督算法和无监督算法之间建立共同混合模型来完成的。此外,还应用了配子群群的优化算法来找到最佳的超参数。使用了两个数据集,在第一个数据集中,提出的混合模型在准确性,AUC和F1分数上优于99.2%的其他模型,但在第二个数据集中,在第二个数据集中,它的精度达到了大约92%的f1 cec,incece incecy incc and cocc and cocc and cocc and cocc and cocc and cocc and cocc,and cc inc inc ancc and coct ycc and acc and c。最后,论文提供了一种方法,研究人员可以使用混合机器学习来预测水质。
单位重量 5.5 千克(含电池) 电源电压 6V DC 电池(4 x 1.5V 碱性“D”电池) 电流消耗 睡眠模式 通常为 106 μ A LCD 活动 通常为 323 μ A 检查探头平均 4mA GSM 传输最大 200mA。典型电池寿命 > 2 年 电池低阈值 4.5V 保险丝 FS1 100mA 可复位保险丝 FS2 F 100mA H 250V 1500A 断路容量 FS3,4 Littelfuse 0242.050UAT1 50mA 250V 4000A 断路容量 FS5 Littelfuse 0242.100UAT1 100mA 250V 4000A 断路容量 FS6 T 3.15AH 250V 1500A 断路容量 最大探头电缆长度 200m(小于表 3 中的值将被超过) 光电隔离输出(CN1)U m = 253Vrms。此输出设计用于切换高达 12V、100mA 的直流信号 信标输出(CN8)11.2V DC,最大 100mA 表 1 - 电气规格
最近,牙科CAD/CAM技术和粘合技术的开发和渐进性已使新型牙科材料广泛使用。减法制造和增材制造是使用金属,陶瓷和复合材料制造牙科假体,正畸设备和手术指南等的CAD/CAM系统的主要类别。减法制造过程(例如铣削)可以减少由于高工业标准下的铸造过程而导致的缺陷和毛孔。选择性激光熔化(SLM)之类的添加剂制造过程可以通过将金属粉末融合而没有太多孔隙率来产生金属底物。仍然没有足够的证据来使用新技术研究新材料和加工程序。传统铸造技术仍然是牙科金属加工中的主要方法。因此,我们很高兴邀请您提交一份手稿,包括原始研究文章和有关本期特刊的评论,涉及基于金属和基于陶瓷的牙科材料的任何进步。
陶瓷硅基涂层是专门为某些金属基材(不锈钢、碳钢、高合金和铸造合金)提供防腐保护而设计和开发的,它是由无机成分的受控熔合过程产生的,旨在在金属基材上形成表面层。传统的涂层工艺包括制备配方(从创新的陶瓷基质开始),将原材料以合适的配方混合以满足涂层件的要求,然后对要涂层的工件进行预处理(通常是喷砂,这是一个简单的步骤),以去除金属表面的杂质,然后使用最合适的技术在工件上沉积陶瓷配方,以确保最佳性能。最常见的应用技术是喷涂、浸涂和流涂(也可以提到电泳沉积和粉末静电)。最后需要进行 700-950 ºC 以上的热处理,以便将陶瓷硅基涂层巩固在金属基材上。
摘要 - 团队灵感从Roboboat 2024,Robosub 2024和Robotx 2024中汲取了教训,将我们的自主地面车辆(ASV),Barco Polo升级为2.0版。我们通过显着改善了我们的软件并安装新的壁球发射器和水枪,提高了Barco Polo的性能和可靠性,从而使尝试所有任务的能力。团队计划通过融合不同的全球导航卫星系统(GNSS)和一个具有深度感知的立体摄像头来完成使用同时本地化和映射(SLAM)的所有任务。我们还组织了电气系统,以解决测试期间观察到的电气连接的不稳定性。有条不紊的测试策略,包括单位测试,测试计划和状态会议,简化了开发过程,使远程成员能够与当地队友有效合作。设计审查,连续集成以及通过系统工程和敏捷过程的迭代反馈使团队能够快速失败并及时改善子系统。
水体重金属污染日益受到关注。为了便于水体重金属监测,我们开发了对重金属高度敏感且反应迅速的转基因水蚤。从大型蚤中获得了金属反应基因金属硫蛋白A及其启动子区。利用TALEN技术将其启动子区与绿色荧光蛋白(GFP)基因融合的嵌合基因整合到大型蚤中,产生了转基因水蚤,名为大型蚤MetalloG。当大型蚤MetalloG暴露于重金属溶液1 h时,GFP仅在中肠和肝胰腺中诱导表达。激活GFP表达的最低重金属浓度分别为1.2 µM Zn 2+ 、130 nM Cu 2+ 和70 nM Cd 2+ 。重金属暴露24 h可进一步降低阈值。 D. magna MetalloG 有助于检测水中的重金属,并可能增强水质监测。