脑医学图像融合在构建当代图像以增强相互和重复信息以用于诊断目的方面起着重要作用。提出了一种对脑图像使用基于核的图像滤波的新方法。首先,使用双边滤波器生成源图像的高频分量。其次,估计第一幅图像的强度分量。第三,对几个滤波器采用侧窗滤波,包括引导滤波器、梯度引导滤波器和加权引导滤波器。从而最小化第一幅图像的强度分量与第二幅图像的低通滤波器之间的差异。最后,基于三个评估指标对融合结果进行评估,包括标准差(STD)、特征互信息(FMI)、平均梯度(AG)。基于该算法的融合图像包含更多信息、更多细节和更清晰的边缘,有助于更好地诊断。因此,我们基于融合图像的方法能够很好地找到目标体积的位置和状态,从而远离健康部位并确保患者的健康。
在HMD上,我们正在探索新的智能服装应用程序和用例的许多可能性 - 我们将于今年晚些时候将自己的几种令人兴奋的智能服装带到市场上 - 但我们的愿景是通过为您提供设计的设计规范和技术规格来开放可能性的世界,以创建智能Outfit。
更详细的信息:A。Pai,T。Reiter,O。Vodyakho,M。Maerz,“用于汽车牵引力逆变器的SIC混合模块的任务概况分析及其在科学,技术和工程系统的进步中,具有电气和热量的实验性验证”。3,编号1,329-341,2018。
摘要 - 关于基于相机和LIDAR的语义对象细分的批判性研究,用于自动驾驶的批判性研究显着受益于深度学习的发展。具体来说,视觉变压器是一种新型的突破性,将多头注意机制成功地带入了计算机视觉应用。因此,我们提出了一个基于视觉变压器的网络,以进行摄像机范围融合,以应用于自动驾驶的语义分割。我们的提案在双向网络上使用视觉变压器的新型渐进式策略,然后将结果集成到变压器解码器层上的交叉融合策略中。与文献中的其他作品不同,我们的摄像头融合变压器在诸如雨水和低照明之类的挑战性条件下进行了评估,表现出良好的性能。本文以不同的方式报告了对车辆和人类类别的分割结果:仅相机,仅LIDAR-和摄像头融合。我们对也用于语义分割的其他网络执行相机融合式传输(CLFT)的相干控制的基准实验。实验旨在从两个角度独立地评估CLFT的能力:多模态传感器融合和骨干架构。定量评估表明,与完全跨跨性神经网络网络(FCN)摄像头 - LIDAR-LIDAR融合神经网络相比,我们的CLFT网络可在具有挑战性的暗湿条件下获得高达10%的改善。我们的完整代码可在线提供交互式演示和应用程序1。与变压器主链与网络形成鲜明对比,但使用单一模态输入,全周围的改进为5-10%。
摘要 —脑出血的特征是由于血液凝结或高血压导致脑动脉破裂,存在严重的创伤甚至死亡风险。这种出血会导致脑细胞损伤,常见原因包括脑肿瘤、动脉瘤、血管异常、淀粉样血管病、创伤、高血压和出血性疾病。当发生出血时,氧气无法再到达脑组织,如果脑细胞缺氧和营养物质超过三四分钟,就会开始死亡。受影响的神经细胞及其控制的相关功能也会受到损害。早期发现脑出血至关重要。本文提出了一种有效的混合深度学习 (DL) 模型,用于从脑 CT 图像中检测颅内出血 (ICH)。所提出的方法集成了 DenseNet 121 和长短期记忆 (LSTM) 模型,以准确分类 ICH。DenseNet 121 模型用作特征提取模型。实验结果表明,该模型的准确率、精确率、召回率和 F1 分数分别为 97.50%、97.00%、95.99% 和 96.33%,证明了其在准确识别和分类 ICH 方面的有效性。
摘要 - 从鸟类的视图(BEV)角度来看,语义场景细分在促进移动机器人的计划和决策方面起着至关重要的作用。尽管最近仅视力的方法表现出了显着的性能进步,但它们通常在不利的照明条件下(例如降雨或夜间)挣扎。虽然主动传感器为这一挑战提供了解决方案,但激光雷达的高成本仍然是一个限制因素。将摄像机数据与汽车雷达融合起来是更便宜的替代方法,但在先前的研究中受到了较少的关注。在这项工作中,我们旨在通过引入Bevcar(一种新型的BEV对象和地图细分方法)来推动这一有希望的途径。我们方法的核心新颖性在于首先学习原始雷达数据的基于点的编码,然后将其利用以有效地将图像特征抬起到BEV空间中。我们对Nuscenes数据集进行了广泛的实验,并证明Bevcar优于当前的技术状态。此外,我们表明,合并雷达信息显着提高了挑战性环境条件中的鲁棒性,并提高了远处对象的细分性能。为了培养未来的研究,我们提供了实验中使用的Nuscenes数据集的天气拆分,以及http://bevcar.cs.uni-freiburg.de的代码和训练有素的模型。
摘要:随着人工智能,深度学习和传感器技术的持续发展,基于多传感器信息融合技术的自动驾驶已成为汽车行业的重要研究方向。本文分析了多传感器信息融合技术,并介绍了在自主驾驶中常用的视觉传感器和雷达传感器。本文得出结论,多传感器技术具有更快,高实时性能和高系统鲁棒性的特征和优势。此外,该技术有效地改善了传统单传感器的缺点,例如单一信息获取,低准确性和不良的实时性能,并为开发自主驾驶技术的发展奠定了良好的基础。同时,许多研究表明,多传感器信息融合技术在道路信息感知,自动停车技术和自动驾驶中的车辆安全系统中具有重要意义和深远的影响。但是,多传播信息融合技术是一种多域,多理论和跨学科技术,因此将其应用于自主驾驶功能时仍面临各种挑战。
[ 执行摘要 ] 为了协调和吸引社区参与核聚变能源的巨大潜力,广泛的利益相关者聚集在一起,组成了一个由学术界、工业界(成熟和初创)、国家实验室和社区组织组成的联盟,致力于将核聚变变为现实。我们赞赏美国能源部为核聚变技术建立公私联盟框架 (PPCF) 的努力,我们很高兴能为这一协调一致的响应做出贡献。我们对 PPCF 的愿景是建立区域核聚变技术园区,这些园区最初将容纳越来越多的中小型试验台,然后逐步建立更大规模、更综合的设施。这种方法将利用现有的核聚变设施和资源,同时积极促进劳动力发展和创造就业机会。
剂量组和10mg剂量组的85%在第14天达到LOD以下的SARS-COV-2水平,而安慰剂为72%(P = NS)。§类似地,5mg剂量组的80%,10mg剂量组的77%通过
摘要:野生活动的增加以及产生的影响促使人们开发了高分辨率的野生行为模型,以预测蔓延。使用卫星检测火灾位置的最新进展进一步提供了使用测量结果来改善通过数据同化来改善数值模型的差异预测的机会。这项工作开发了一种具有物理信息的方法,可以从卫星测量中推断野生燃料的历史,从而提供必要的信息,以初始化耦合的气氛 - 从测得的野生野生状态的野生模型。到达时间是到达给定的空间位置的时间,它是野生火灾历史的简洁表示。在这项工作中,经过WRF - SFIRE模拟训练的有条件的Wasserstein生成对抗网络(CWGAN)用于从卫星主动数据中推断出到达的时间。CWGAN用于从给定卫星主动检测的到达时间的条件分布中产生可能到达时间的样本。由CWGAN产生的样品进一步用于评估预测的不确定性。在2020年至2022年之间,对四个加利福尼亚野生火力进行了测试,并将预测与高分辨率机载红外措施进行比较。此外,将预测的点火时间与报告的点火时间进行了比较。平均Sørensen的系数为0.81,用于固定器的周围和32分钟的平均点火时间差表明该方法非常准确。