退化现象。使用去噪技术去除图像中的噪声和使用去模糊技术去除图像中的模糊都属于图像恢复。 • 彩色图像处理:这基本上有两种类型——全彩色和伪彩色处理。在前一种情况下,图像是通过全彩色传感器(如彩色扫描仪)捕获的。全彩色处理进一步分为两类:在第一类中,每个组件被单独处理,然后形成复合处理后的彩色图像;在第二类中,我们直接操作彩色像素。伪彩色或假彩色处理涉及根据规定的标准将颜色分配给特定的灰度值或值范围。强度切片和颜色编码是伪彩色处理的技术。颜色用于图像处理是因为人类能够区分不同色调和强度与不同灰度。此外,图像中的颜色使得从场景中提取和识别物体变得容易。 • 图像压缩:这意味着通过消除重复数据来减少表达数字图像所需的信息量。压缩是为了减少图像的存储要求或减少传输期间的带宽要求。压缩是在存储或传输图像之前完成的。压缩有两种类型——有损和无损。在无损压缩中,图像的压缩方式不会丢失任何信息。但是在有损压缩中,为了实现高水平的压缩,可以接受一定量的信息丢失。前者适用于图像存档,例如存储医疗或法律记录,而后者适用于视频会议、传真传输和广播电视。无损压缩技术包括可变长度编码、算术编码、霍夫曼编码、位平面编码、LZW 编码、游程编码和无损预测编码。有损压缩技术包括有损预测编码、小波编码和变换编码。• 形态图像处理:它是一种绘制图像中可用于表示和描述图像形态、大小和形状的部分的技术。常见的形态学算子有膨胀、腐蚀、闭运算和开运算。形态学图像处理的主要应用包括边界提取、区域填充、凸包、骨架、细化、连通分量提取、加厚和剪枝。• 图像分割:这是使用自动和半自动方法从图像中提取所需区域的过程。分割方法大致分为边缘检测方法、基于区域的方法(包括阈值和区域增长方法)、分类方法(包括 K 近邻、最大似然法)、聚类方法(K 均值、模糊 C 均值、期望最大化方法)和分水岭分割 [3]。• 表示和描述:分割过程的结果是像素形式的原始数据,需要进一步压缩才能表示和描述,以便进行额外的计算机处理。区域可以用其外部特征(如边界)来表示
1。Generative AI Is Fuelling Industry Innovation ................................65 5
随着风能和太阳能可再生能源发电量的增加,对这些能源的预测变得越来越重要。预测技能正在提高,但预测的使用方式也在提高。在本文中,我们简要概述了风能和太阳能预测的最新进展。我们描述了从几分钟到几天时间尺度的统计和物理建模方法,包括确定性和概率性预测。然后我们的重点转移到考虑可再生能源预测的未来。我们讨论了最近的进展,这些进展表明预测技能有巨大的改进潜力。除了预测本身,我们还考虑了在风险约束下辅助决策所需的新产品。未来的预测产品将需要包含概率信息,但要以适合最终用户及其特定决策问题的方式提供这些信息。随着越来越多的人在这个领域竞争,在这个领域运营的企业可能会看到商业模式的变化,不同的产品需要不同的技能、数据和建模组合。随着区块链技术的采用,数据交易本身可能会发生变化,区块链技术可以让提供商和最终用户以可信但去中心化的方式进行交互。最后,我们讨论了可再生能源大量使用的情况下的新行业要求和挑战。新的预测产品有可能模拟可再生能源对电力系统的影响,并帮助调度工具保证系统安全。
简而言之,对过去发展的文献回顾结果表明,虽然太阳能供暖是瑞典太阳能技术的第一个用途;用于区域供热和住宅安装,但由于缺乏经济竞争力,它后来逐渐失去人气。光伏发电出现的时间比太阳能供暖晚,影响范围更加广泛。研究和生产是早期的重点领域,而分散式光伏发电和集中式光伏发电后来占据了主导地位。补贴和安装支持有助于激励分散式领域的住宅安装,而集中式市场仍未获得补贴。电池储能是最新形成的行业之一,由于政策优惠,电池安装在住宅领域越来越引人注目,而由于 Svenska Kraftnät 提供的优惠电网支持服务,电池安装在集中式领域也越来越引人注目。
量子AI的量子计算结合以及专家系统为机器学习算法开辟了一个新的可能性领域。Quantum机器学习公式(QML)在涉及处理大数据以及揭示秘密模式时,提供了相当的优势。通过利用量子叠加和纠缠,QML公式可以同时查看许多机会,从而获得更精确的预测以及耐用的设计。在交易背景下,量子AI的增强设备学习能力为创新的交易方法打开了可以动态调整到不断变化的市场条件的创新交易方法,不可避免地会导致更高的回报和降低的威胁。
Poldrack,Russell A. 1,Markiewicz,Christopher J. 1,Appelhoff,Stefan 2,Ashar,Yoni K. 3,Auer,Tibor 4,5,Baillet,Sylvain,Sylvain 6,Bansal,Bansal,Shashank 7,Shashank 7,Beltrachini,Beltrachini,Beltrachini,Leanar,Leanar,Benar,Christian G. 9,Bertazzoli,bertazzoli,bertazzoli,bertazzoli,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,1111 ,, ,Blair,Ross W. 1,Bortoletto,Marta 10,Boudreau,Mathieu 16,Brooks,Teon L. 1,Teon L. 1,Calhoun,Vince D. 17,Castelli,Castelli,Filippo Maria 18,19,Clement,Clement,Patricia 20,21,Cohen,Cohen,Cohen,Cohen,Alexander L.22 23,24,吉尔斯(De Hollander),吉尔斯(De Hollander),25,de la iglesia-vayá,玛丽亚26,de la vega,Alejandro 27,Delorme,Arnaud,28,Devinsky,Orrin 29,Draschkow,Draschkow,Dejan,Dejan 30,Duff,Duff,Eugene Paul 31,Dupre,Dupre,Elizabeth 1,Earlin,Erlin,Erlind 32 Illaume 34,Galassi,Anthony 32,Gallitto,Giuseppe 35,36,Ganz,Melanie 37,38,Gau,Rémi39,Gholam 39,Gholam,James 40,Ghosh,Satrajit S. 41,Giacomel,Giacomel,Giacomel,Alessio,Alessio,Alessio 42 44 , Gramfort, Alexandre 45 , Guay, Samuel 46 , Guidali, Giacomo 47 , Halchenko, Yaroslav O. 48 , Handwerker, Daniel A. 32 , Hardcastle, Nell 1 , Herholz, Peer 49 , Hermes, Dora 50 , Honey, Christopher J. 51 , Innis, Robert B. 32 , Ioanas, Horea-Ioan 48 , Jahn, Andrew 52 , Karakuzu, Agah 16 , Keator, David B. 53,54,55 , Kiar, Gregory 56 , Kincses, Balint 35,36 , Laird, Angela R. 57 , Lau, Jonathan C. 58 , Lazari, Alberto 59 , Legarreta, Jon Haitz 60 , Li, Adam 61 , Li, Xiangrui 62 ,Love,Bradley C. 63,Lu,Hanzhang 64,Marcantoni,Eleonora 65,Maumet,Camille 66,Mazzamuto,Giacomo67,Meisler 67,Meisler,Steven L. 68,Mikkelsen,Mikkelsen,Mark 69 4,75,Niso,Guiomar 76,Norgaard,Martin 32,37,Okell,Thomas W. 59,Oostenveld,Robert 77,78,Ort,Ort,Eduard 79,Park J. 80,Patrick J. 80,Pawlik,Pallik,Pallik,Mateusz,Mateusz 81,Pernet,Pernet,Pernet,Cyril R.38,Pestilli,Pestilli,Pestilli,Petilli,franco,Petr,Petr,Petr,Jan,Jan 272菲利普斯(Phillips),克里斯托夫(Christophe),83,派恩,让·巴蒂斯特(Jean-Baptiste)84,波罗尼尼(Pollonini),卢卡(Luca)85,86,拉马纳(Raamana),普拉德普·雷迪(Pradeep Reddy),里特(Ritter),佩特拉(Ritter),佩特拉(Petra)88,89,90,91,92,里佐(Rizzo) 99,Routier,Alexandre 100,Saborit-Torres,Jose Manuel 26,Salo,Taylor 101,Schirner,Michael 88,89,90,91,92,Smith,Smith,Robert E. 102,103,Spisak,Spisak,Spisak,Spisak,Tamas,Tamas 35,104,Sprenger,Sprenger,Julia,Julia 105,Swann,Swann,Swann,Swann,Nicole C. C. C. Nicole C. 106 , Szinte, Martin 105 , Takerkart, Sylvain 105 , Thirion, Bertrand 45 , Thomas, Adam G. 32 , Torabian, Sajjad 107 , Varoquaux, Gael 108 , Voytek, Bradley 109 , Welzel, Julius 110 , Wilson, Martin 111 , Yarkoni, Tal 112 , Gorgolewski, Krzysztof J. 1
汽油车辆作为交通工具的使用量增加导致全球变暖急剧上升。排放到大气中的有害汽车尾气(如一氧化碳和二氧化氮)对我们呼吸的空气造成了严重影响。这导致人们需要零排放的车辆 [1]。过去几年,特斯拉、日产和丰田等汽车公司将新技术推向市场,主要是电动汽车和氢动力汽车。这两种技术更受欢迎,旨在减少传统汽车造成的全球排放。本文旨在根据这两种交通方式的生态、经济和科学价值对其进行分析和比较。
“合成数据”是一类人工生成的数据,而不是从对现实世界的直接观察中获得的数据。可以使用不同的方法生成数据,例如从真实数据中进行统计严格采样、语义方法和生成对抗网络,或者通过创建模拟场景来生成数据,其中模型和流程相互作用以创建全新的事件数据集。