我们对个体表现感兴趣的情况。在我们对个体表现感兴趣的情况下,我们希望将失败概率降至最低,我们希望物体与期望轨迹的偏差尽可能小——因为正是这种偏差导致了失败。模糊控制中出现这种偏差的可能原因之一是模糊控制基于使用“与”和“或”运算结合原始专家的置信度,而原始估计仅提供一些不确定性。就像专家无法提供所需控制的确切值一样——这就是为什么首先需要模糊技术——专家也无法用确切的数字来描述他/她对某个陈述的置信度。如果我们强迫专家这样做——许多系统都是这样做的——当再次询问相同的陈述时,专家会提供略有不同的数字。这些变化会影响“与”和“或”运算的结果——从而影响最终的控制。与所需控制的任何过大偏差都可能是灾难性的。因此,为了安全起见,我们要确保最坏的偏差尽可能小。让我们用精确的术语描述这种情况。设 δ > 0 表示专家提供程度的准确度。这意味着同一位专家可以对同一句话 A 的置信度提供估计值 a 和 a ′,它们是 δ 接近的,即 | a − a ′ | ≤ δ 。类似地,对于另一个语句 B ,专家可以提供估计值 b 和 b ′,使得 | b − b ′ | ≤ δ 。由于这种不确定性,我们可以得到不同的值 f & ( a , b ) 和 f & ( a ′ , b ′ ),即我们有一个非零差值 | f & ( a , b ) − f & ( a ′ , b ′ ) |。最坏的情况是这种差异最大。它的特点是价值
最近,我们提出了语言学的哥本哈根解释(或量子语言、测量理论),它对描述经典系统和量子系统都具有很强的威力。因此,我们认为量子语言可以看作是科学语言。此外,我们证明了某些逻辑(称为量子模糊逻辑)在量子语言中是有效的。一般来说,逻辑和时间不太相容。然后,本文的目的是表明量子模糊逻辑与时间配合得很好。也就是说,量子模糊逻辑的优势在于能够清楚地区分蕴涵和因果关系。事实上,我们将证明“如果没有人被骂,就没有人会学习”这个命题的反命题(或“约翰总是饿”的否定命题)可以用量子模糊逻辑来写。然而,日常语言中的“时间”有各种方面(例如,时态、主观时间)。因此,不可能用量子语言的“时间”来理解日常语言的所有“时间”。
摘要:人类与世界的互动是由不确定性主导的。概率理论是面临这种不确定性的宝贵工具。根据贝叶斯定义,概率是个人信念。实验证据支持以下观点:人类行为与感觉,运动和认知领域的贝叶斯概率推论高度一致。我们大脑的所有高级心理物理功能都被认为将新皮层中神经元的相互联系和分布式网络作为其生理底物的活性。神经元在形式为模糊集的皮质柱中组织。模糊集理论在将成员功能重新解释为可能性分布时,已经接受了不确定性建模。贝叶斯公式的术语是可以想象的,因为模糊集和贝叶斯的推论变成了模糊的推断。根据QBISM,量子概率也是贝叶斯。它们是逻辑构造而不是物理现实。它得出的是,诞生规则不过是一种总概率的量子定律。的波形和测量算子在认识论上被视为。它们两个都类似于模糊集。通过贝叶斯概率在模糊逻辑,神经科学和量子力学之间建立的新链接可能会激发人工智能和非常规计算的发展新想法。
摘要 — 量子计算将通过利用叠加、纠缠和干涉等量子力学效应,实现大规模并行算法的设计,从而以有效方式解决难题,从而彻底改变计算领域。这些计算改进可能会对模糊系统在诸如大数据等环境中的设计和使用方式产生重大影响,在这些环境中,计算效率是一个不可忽略的约束。为了为这一创新方案铺平道路,本文介绍了一种基于二次无约束二元优化 (QUBO) 问题的模糊集和运算符的新表示,以便在一种称为量子退火器的量子计算机上实现模糊推理引擎。
1生产工程毕业后计划,巴西圣保罗卫理公会大学。2工程学校,麦肯齐长老会大学,圣保罗,巴西。3古巴圣地亚哥de Cuba的Oriente University机械与工业工程学院。 4巴拉那帕拉纳帕拉纳联邦技术大学的客座教授。 5 Insper-巴西圣保罗教育与研究所。 *通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。 但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。 在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。 基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。 因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。 使用两个级别的因子PF,9.40 g/s和13.35 g/s。3古巴圣地亚哥de Cuba的Oriente University机械与工业工程学院。4巴拉那帕拉纳帕拉纳联邦技术大学的客座教授。5 Insper-巴西圣保罗教育与研究所。 *通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。 但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。 在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。 基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。 因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。 使用两个级别的因子PF,9.40 g/s和13.35 g/s。5 Insper-巴西圣保罗教育与研究所。*通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。使用两个级别的因子PF,9.40 g/s和13.35 g/s。差异分析允许识别PF影响BH,BH/BW比率,D和WA。激光功率(LP)的增加导致几何特征BW和DP的增加。第一个FI,用于预测珠的几何特性,具有高足够的(相对误差高达8.43%),用于评估EX的体验条件。考虑到所研究的工作条件和评估的变量,第二FI表示最佳相互作用。使用沉积过程参数LP = 250 W,FL = 5 mm,PF = 9.40 g/s,获得了最大输出解体指数(ODI = 0.845)。关键字:激光金属沉积,模糊推理,珠几何预测,沉积过程参数,AISI 316不锈钢1.简介
1 15.5399 446.433 0.000108 0.000127 0.2816 3.6817 2 14.7607 427.681 0.000126 0.000151 0.2933 3.5751 3 15.5426 447.411 0.000108 0.000127 0.2810 3.6939 4 15.3294 434.847 0.000116 0.00014 0.2762 3.7014 5 15.9980 466.920 0.0001 0.000118 0.2718 3.8210 6 16.2995 455.317 0.000972 0.000117 0.2540 3.8918 7 16.8535 461.050 0.000906 0.00011 0.2365 3.9722 8 15.2010 463.274 0.000113 0.000132 0.2981 3.6796 9 13.6257 406.182 0.00015 0.000185 0.3333 3.2856 10 13.9531 413.331 0.000143 0.000175 0.3219 3.4029 11 13.1538 400.748 0.000161 0.000200 0.3529 3.2298 12 14.2234 417.177 0.000137 0.000165 0.3123 3.4526 13 13.6782 420.489 0.000142 0.000167 0.3506 3.2687 14 13.5103 417.582 0.000144 0.000169 0.3583 3.1849 15 13.2064 412.893 0.000151 0.000178 0.3698 3.1134 16 12.3658 388.257 0.000181 0.000226 0.3857 3.0153 17 12.9241 397.207 0.000167 0.00021 0.3573 3.2094 18 13.5875 407.496 0.000151 0.000185 0.3342 3.3352 19 14.2193 425.415 0.000137 0.000164 0.3174 3.4692 20 14.9834 443.361 0.000118 0.000138 0.3040 3.5664 表2 归一化灰阶MRI图像特征向量 图像序列
摘要 — 微微水力系统是水力涡轮机调速器、电子负荷控制器和发电机的组合,被概述为农村社区离网供电选项的推荐方法之一。在传统的水力系统安装中,具有比例-积分-微分 (PID) 的电子负荷控制器是提供发电和负荷消耗需求之间功率平衡的最佳选择。然而,白天的电力需求总是会出现高峰,但夜间的能源消耗却很低。这种情况导致大量能源被倾倒和浪费,并且缺乏与工厂电力稳定性有关的能源管理。因此,本研究旨在为能够满足关键负载要求的能源系统设计模糊逻辑控制 (FLC),然后使用 MATLAB SIMULINK 进行仿真以评估过剩能源的有效利用。使用 Mamdani 的方法和 25 条成员规则来实现基于模糊逻辑的控制系统,可以在放电、电池备份和负载供应等场景之间执行有效的功率流控制。结果表明,通过对微型水力发电系统 2 秒到 3 秒的剩余发电量实施模糊控制,这种方法是一种更好的替代方案,并且更有效地实现系统稳定和能源供应。
摘要 最近,使用卷积神经网络 (CNN) 解码人类脑电图 (EEG) 数据推动了脑机接口 (BCI) 中运动想象脑电图模式识别的最新技术。虽然已经使用多种 CNN 模型来对运动想象脑电图数据进行分类,但尚不清楚聚合异构 CNN 模型集合是否可以进一步提高分类性能。为了整合集成分类器的输出,本研究利用模糊积分和粒子群优化 (PSO) 来估计分配给分类器的最佳置信度水平。所提出的框架聚合了 CNN 分类器和模糊积分与 PSO,根据 BCI 使用场景,在各种 CNN 模型训练方案中实现运动想象脑电图数据的单次试验分类的稳健性能。这项概念验证研究证明了应用模糊融合技术增强基于 CNN 的 EEG 解码的可行性,并有利于 BCI 的实际应用。关键词:脑机接口 (BCI)、脑电图 (EEG)、卷积神经网络 (CNN)、模糊积分、运动想象 (MI)、粒子群优化 (PSO)。
摘要 —本文介绍了一种基于模糊理论的两个相邻住宅电网连接微电网之间的电力交换管理,该微电网由光伏发电和电池储能系统 (BESS) 组成。所提出的电力交换管理考虑了每个微电网的能量变化率的大小以及两个微电网的 BESS 之间的充电差异,以对能量不足的 ESS 进行充电。因此,所提出的电力交换管理可以通过联合运行而不是单独运行来减少从每个微电网的主电源吸收的电量,并且还可以同步两个微电网的 ESS,从而改善 ESS 的行为。对有和没有电力交换的场景的模拟结果进行了比较,以证明所提出的电力交换管理的充分行为。