通过癌症状态本身给予的压力增长的癌症维持与维持持续增长的能力之间的联系正在增长。但是,我们对如何管理这种压力的理解存在很大的差距,尤其是在癌症启动细胞的水平上。在这里,我们鉴定了包括动态,应激自适应核糖核蛋白络合物(称为应激颗粒(SG))的蛋白质,这些蛋白质在白血病干细胞(LSC)驱动的白血病传播所必需的因素中富集。着眼于核心SG成核G3BP1,我们阐述了SG在人类急性髓样白血病(AML)中的作用,它们的目标性以及它们所管理的机制,以揭示AML的新型倾向,特别是LSC增强分数,特别是在SG组成的表达中,并促进了SG的表达,并在SG组成的表达中,并以此为基础,以便在SG组成的表达中,以便在SG的表达中,以便在SG上良好的忠诚度,以便在SG的表达中,并以此为基础。 维护。我们进一步揭示了G3BP1在AML上下文中的转录和蛋白质相互作用组,并表明对先天免疫信号传导的巩固控制,并通过G3BP1对高度结构化的3'UTRS的区域结合特异性进行了凋亡抑制,并与RNA Helicase UPF1合作,以中介Sgs in sgs in sgs in sgs n sgs in sgs in sgs n sgs。总的来说,我们的发现提出了在AML和LSC中利用的新型压力适应性基本原理,这些原理可能扩展到其他癌症,并发现SGS作为治疗开发的新轴。
心脏剪接因子 RBM20 的突变会导致恶性扩张型心肌病 (DCM)。为了了解 RBM20 相关 DCM 的机制,我们设计了具有 DCM 相关 RBM20 错义突变的同源 iPSC 以及 RBM20 敲除 (KO) iPSC。由这些细胞系制成的 iPSC 衍生的工程心脏组织重现了 RBM20 相关 DCM 的收缩功能障碍,并且显示错义突变的功能障碍比 KO 更严重。通过 eCLIP 对 RBM20 RNA 结合的分析表明,突变型 RBM20 对与肌萎缩侧索硬化症 (ALS) 和加工体相关 RNA 结合蛋白 (FUS、DDX6) 共享的 3′UTR 序列具有功能获得偏好。深度 RNA 测序表明,RBM20 R636S 突变体具有独特的基因、剪接、多聚腺苷酸化和环状 RNA 缺陷,与 RBM20 KO 不同。超分辨率显微镜验证了突变体 RBM20 保持非常有限的核定位潜力;相反,突变蛋白在基础条件下与细胞质加工体 (DDX6) 结合,在急性应激后与应激颗粒 (G3BP1) 结合。总之,我们的结果强调了通过剪接依赖和非剪接途径导致心脏疾病的致病机制。
