摘要:基于主流的块状结局效果晶体管(Finfet)技术,制造了16 nm-L G P型栅极栅极硅纳米线(Si NW)金属氧化物半氧化物晶体管效应晶体管(MOSFET)。已系统地研究了正常MOSFET的电气特性以及低温时的量子运输的温度依赖性。我们证明了GAA SI NW MOSFET的低温栅极控制能力和身体效应的免疫力,并观察纳米线(110)通道方向子频段结构的两倍退化孔子带的运输。此外,在GAA SI NW MOSFET中证明了明显的弹道传输特性。由于存在典型MOSFET的间隔物,因此在较低的偏差下也成功实现了量子干扰。
摘要:本文介绍了使用不同高介电常数 (高 k) 栅极介电材料的双栅极 (DG) 和栅极环绕纳米线 (GAA) MOSFET 的电气行为。为了研究高 k 介电材料对 DG 和 GAA 的影响,使用 Atlas Silvaco TCAD 工具模拟器件并确定电气特性。本研究选择的高 k 材料是氮化硅 (Si3N4)、氧化铝 (Al2O3)、氧化锆 (ZrO2) 和氧化铪 (HfO2)。栅极介电材料在设计新型高性能纳米级电气器件方面发挥了重要作用。可以观察到,当接近更高的介电常数值时,导通电流增加,而亚阈值斜率 (SS) 阈值电压 (Vth) 和漏电流减少。可以观察到,与其他模拟介电材料相比,HfO2 对 DG 和 GAA MOSFET 都表现出最佳性能。
[1] [1] [1] Ad Ad Ad jus us jus u ted ed EB EB EB ITD ITD T ITD DA, A, A, A ananana on- on-GAA GAA GAA GAA GAA P fi P fi P fi P fi P fi 金融金融 mlm eas eas eas eas eas as ure ure ure ure ure ure , i , i , i , iisdsdsdsdsd efine efine efine n fi ed ed ed ed ed d as a as as as US US US US US US U . 。 G。 G。 G AAP AAP AAP AAP AAP AAP AP AAP Ne Ne Ne Ne Ne Ne N t II t I t I tt II t ncon ncon ncon nco 与我,我,我,我,我,我,我,as as as re re re por por por por 10 1 0 -K, -K, -K -K, -K -K, pl pl pl us s us us us int int n ere e ere ere ere ere e est st st st
在GAA中仅引入少数BI或N的原子百分比对材料的带隙有很大影响。特异性BI掺杂的GAA显示了光电应用中本地带隙工程的潜力。由于应变效应,将BI和N掺入GAA中很困难。在这项工作中,我们研究了这些掺杂剂在原子量表上的排序,以便更好地了解宿主晶格中这些掺杂剂的行为。横截面扫描隧道显微镜(X-STM)用于在GAAS矩阵中找到BI和N掺杂剂的确切位置,从而使我们能够研究其最近的邻居对出现和对相关函数。在短范围(1-2 nm)上发现了BI掺杂剂之间的有吸引力的相互作用,并且在N掺杂剂之间观察到了相似的效果。我们发现BI和N掺杂剂之间具有相似长度尺度的排斥相互作用。在BI-N最近的邻居对中发现了类似的排斥。密度功能理论(DFT)用于计算不同的邻居对能量,并将这些结果测试到实验对的情况下。从实验和理论结果得出的结论是,生长条件和n包含会极大地影响GAA中的BI分布。
超级电容器和晶体管是将来电子设备的两个关键设备,必须结合可移植性,高性能,易于可伸缩性等。与石墨烯相关的材料(GRM)经常被选为这些应用的活性材料,因为它们的独特物理特性可通过化学功能化来调整。最新的GRM中,只有减少的石墨烯(RGO)在温和培养基中显示出足够的多功能性和加工性,使其适合在这两种类型的设备中集成。在这里,提供了RGO的声音替代方案,即石墨烯乙酸(GAA),其物理化学特征具有特定的优势。尤其是,在锌混合超级电容器(ZN-HSC)中使用基于GAA的阴极的最先进的重力电容为≈400f g-1的当前密度为0.05 a g-1。相反,基于GAA的LGT支持SI/SIO 2,在0.1 M NaCl中显示出双极行为,其特征是由DIRAC电压高于100 mV的清晰p掺杂。这种设备在纸张流体中成功实现,从而证明了实时监控的可行性。
cofilins3e f:tagcatggcc gaa ggtgtggtctctctctctggggggggtcatcaaag r:cagccacaccc ttc ggccatgccagccagccagccagcttgggtgggtcctcctt n19rhoa n19rhoa TT TT TTTGCCAGAGCCCCABCCAATCACCCACCICACICACICCICCIachIs N17Rac1 F:GTGGGGTGTGTGTGTGTACCICCCAATGCs R CAGGGGHTTITTITTITITITITIES GTCCAGTATATATATAGCATCETCETC42 F : GTTGTGTGTGTCCTSATATATATATATATATATATATATATATATATATATITITITITITITITITITITITITITITITITITITITITY
3.2 足球主要发现 ................................................................................................................ 19 3.3 板球主要发现 ................................................................................................................ 22 3.4 橄榄球联盟主要发现 ........................................................................................................ 23 3.5 曲棍球主要发现 ................................................................................................................ 25 3.6 盖尔式足球协会主要发现 ...................................................................................................... 27 3.7 田径主要发现 ................................................................................................................ 31
Digest纳米材料和生物结构杂志卷。 div>19,编号2,2024年4月至6月,第2页。 669-677 Characterization of Gaas and Gaas/Cr/Gaas Interfacial Layers Fabricated Via Magnetron Sputtering on Silicon (100) Camilo Pulzara-Mora A, José Doria-Andrade B, Roberto Bernal-Correa C, Andrés Rosales-Rivera D, Álvaro Pulzara-Mora *A A Laboratory of Nanoestructure Semiconductor,哥伦比亚国立大学的精确和自然科学学院,曼尼扎尔总部,170004,哥伦比亚。 div>。 div>b物料学实验室,工程学院,帕斯卡尔·布拉沃,麦德林,哥伦比亚哥伦比亚C研究所,Orinoquía研究所,哥伦比亚国立大学,Orinoquia总部,Orinoquia总部,公里9VíaArauca-CañoLimón,Arauca哥伦比亚,曼尼扎莱斯总部,曼尼扎莱斯,曼尼扎尔,曼尼扎尔170004,哥伦比亚。 div>获得半导体材料的获得和研究数十年来一直是感兴趣的主题。 div>但是,在应用时允许更大多功能性的替代方案尚未被阐明,例如包含子过渡金属。 div>在这项工作中,我们报告了由R.F.制备的GAAS和GAAS/CR/GAAS层获得的。 div>磁铁溅射在Si(100)底物上分别改变中间Cr层的沉积时间T = 5分钟和10分钟。 div><进行横截面中的Divanning电子显微镜,以确定GAAS和GAAS/CR/GAAS膜的生长模式。 div>在这种情况下,CR原子可以在金属sublatice中代替甘露原子或通过沿整个层厚度的横截面中的能量色散光谱(EDS)确定了GAAS/CR/GAAS薄膜中元素的百分比。X射线衍射和微拉曼光谱在室温下测量,以分析CRA和GACR二进制相的形成,通过跨层间的扩散。最后,我们得出结论,该技术可能使用该技术获得具有CR包含的半导体合金。(2024年1月22日收到; 2024年4月26日接受)关键词:磁控溅射,拉曼光谱,X射线1。引言在光电行业中使用III-V半导体材料的使用增加了近年来科学界的重大挑战[1,2]。有必要降低生产成本,提高效率并发现设备设计,以使其应用程序更具多功能性。目前正在进行的研究的一个例子涉及与CR,FE,MN等过渡金属等过渡金属掺杂这种类型的半导体。这种耦合允许物理特性的结合,因此打开了各种适用性[3,4]。在GAAS(砷化甘蓝)的情况下,已经存在一个实质性的科学和实验知识库[5],使其成为与提到的一些元素耦合的潜在候选者[6,7]。铬是III-V半导体(例如GAN和GAAS)中发展室温铁磁性的转型金属[11-13]。Arsenide是一种半导体化合物,在室温下直接带隙能量为1.42 eV,由于其各种应用作为红外光发射器,高效太阳能电池(η〜29%)[8],现场效果晶体管[9],以及在室温下的电源辐射检测[10],广泛用于当前技术。
摘要:在本文中,全系统地研究了批量SI底物上垂直堆叠的水平栅极全面(GAA)Si Nanosheet(NS)晶体管的优化。首先优化了NS通道的释放过程以实现均匀的设备结构。对于具有不同GESI厚度(5 nm,10 nm和20 nm)或退火温度(≤900°C)的GESI/SI堆栈样品,GESI/SI堆栈样品的GESI与Si层的选择性湿法超过100:1。此外,通过实验和仿真仔细研究了地下平面(GP)掺杂对改善设备电气特性的影响。随着GP掺杂剂量的增加,N型设备的子阈值特征得到了极大的改善。然而,最初改善了P型设备,然后随着GP掺杂剂量的增加而恶化,它们证明了最佳的电气特性,GP掺杂浓度约为1×10 18 cm -3,这也通过技术计算机辅助设计(TCAD)模拟结果证实。最后,首先在散装基板上制造了4个具有6 nm厚度和宽度30 nm的GAA SI NS通道,并且堆叠的GAA SI NS设备的性能达到了较大的I ON/I ON/I OFF率(3.15×10 5)(3.15×10 5)和SubThreshrold Swings Swings(Subthresshord Swings(ss ss s)(ss s)(71)(71)(71)(71)(71)和较小的值。通过优化寄生通道和装置结构的抑制,漏排水引起的屏障降低(DIBL S)(9(n)/22(p)mV/v)。
摘要—在这项工作中,我们展示了原子层沉积 (ALD) 单通道氧化铟 (In 2 O 3 ) 栅极环绕 (GAA) 纳米带场效应晶体管 (FET),该晶体管采用了后端制程 (BEOL) 兼容工艺。在 In 2 O 3 GAA 纳米带 FET 中,实现了 19.3 mA/µ m(接近 20 mA/µ m)的最大导通电流 (I ON ) 和 10 6 的开/关比,其通道厚度 (T IO ) 为 3.1 nm,通道长度 (L ch ) 为 40 nm,通道宽度 (W ch ) 为 30 nm,介电 HfO 2 为 5 nm。采用短脉冲测量来减轻超薄通道层中流动的超高漏极电流引起的自热效应。 In 2 O 3 FET 获得的创纪录高漏极电流比任何传统单通道半导体 FET 高出约一个数量级。这种非凡的漏极电流及其相关的导通状态性能表明 ALD In 2 O 3 是一种有前途的氧化物半导体通道,在 BEOL 兼容单片 3D 集成方面具有巨大的发展机会。