γ-氨基丁酸-A(GABA A)受体是最广泛规定的睡眠药物的靶标。它是一个由氨基酸神经递质GABA激活的配体门控离子通道,通常导致神经元的超极化导致动作电位降低,从而减少神经元活性。它具有丰富的药理学,并具有许多独立的调节剂结合位点。其中最好的研究是苯二氮卓网站。苯二氮卓类药物对GABA A受体活性的调节产生镇静,催眠,抗焦虑和抗惊厥活性。短期半衰期的苯二氮卓类药物(例如三唑仑)在治疗失眠症方面特别有用,但是人们对经典苯二氮卓类药物的耐受性潜力和依赖性责任提高了,这导致了这些药物的处方减少。近年来,睡眠障碍的治疗已朝着使用非苯二氮卓类镇静性催眠药的使用。这些药物在GABA A受体上的同一部位作用,但与经典苯二氮卓类药物相关的问题较少。我们对GABA的多样性和药理学亚型的多样性和药理学的最新进展为这些化合物的效率提供了合理的解释。临床前研究的发现揭示了在不久的将来设计更好治疗剂的有希望的途径。©2004由Elsevier B.V.保留所有权利。
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本于2021年11月26日发布。 https://doi.org/10.1101/2021.11.24.21266827 doi:medrxiv preprint
i,Kobi P. Bermingham,证明本文所做的工作是我的原始工作,并且尚未随时在Maynooth University或任何其他机构提交。我还证明,它尚未从出版的书,照片,杂志或其他人中复制。
一般 - 此免责声明适用于本文档以及任何介绍该文件的人的口头或书面评论。本文档与任何此类口头或书面评论一起被称为“演示”。本演讲中与GABA Therapeutics,Inc(“公司”),其业务资产,策略和运营有关的信息仅出于一般信息目的,并且不是对购买任何证券,期权,期货或其他与任何辖区的证券及其内容相关的证券,期权,期货或其他衍生产品的征集的正式报价,且其内容及其内容及其内容均不根据证券法律规定。本演示文稿中包含的信息不应作为购买或出售或持有此类证券的建议或出售此类证券的提议。此演示文稿不针对任何地方,州,国家或其他司法管辖区的公民或居民或居民的任何人或实体,或者旨在分发或使用,这些人或居民均与此类司法管辖区的法律或法律相反或需要任何注册或在此类司法管辖区内进行任何登记或许可。本演讲没有考虑到有关任何人的特定投资目标或财务状况的任何税,法律或投资建议或意见。本演讲中使用的某些行业和临床数据可能是从第三方出版物和为其他目的准备的来源获得的。虽然本演讲中的信息被认为是准确且可靠的,但公司及其代理人,顾问,董事,官员,雇员和股东不做任何表示或隐含的代表或担保,以表明或暗示此类信息的准确性,并且公司明确不承担任何可能基于此类信息或错误或遗漏的责任。公司保留在某种程度上或全部全部修改或替换本文所包含的信息的权利,并且没有义务向收件人提供访问修订的信息或通知其接收者的义务。
催产素在大脑发育中起重要作用,并且与大脑中的各种Neu Rotransitter系统有关。至少在发育的某些阶段,催产素在大脑中产生,分泌和分布的异常对于神经精神疾病的病原体至关重要,尤其是在自闭症谱系疾病中。自闭症的病因包括大脑的局部感觉和多巴胺能区域的变化,这也由催产素的下丘脑来源提供。了解他们的相互关系非常重要。在本综述中,讨论了催产素与多巴胺耐药系统,γ-氨基丁酸(GABA)抑制性神经传递及其在自闭症谱系障碍中的变性的关系。特别关注的结果描述了大脑抑制性GABA能标记的表达降低。据推测,由于催产素在某些发育阶段缺乏或功能障碍,GABA能Neu Rotransersission会改变,因此抑制了多巴胺能信号传导并有助于自闭症症状。
。CC-BY-NC 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 3 月 29 日发布。;https://doi.org/10.1101/2024.03.27.587069 doi:bioRxiv 预印本
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
本文探讨了神经递质多巴胺、谷氨酸和γ-氨基丁酸 (GABA) 导致精神分裂症的假设,并得出结论:谷氨酸影响多巴胺和 GABA 的联合模型是最合理的解释机制。多巴胺假说得到了证据的支持,即精神分裂症患者的特定大脑区域的多巴胺受体和神经递质明显增加和减少。此外,针对多巴胺受体的药物已成功减轻了精神分裂症症状。谷氨酸假说认为神经递质谷氨酸是这种疾病的基础,因为影响 NMDA(谷氨酸)受体已被证明会导致积极和消极的精神分裂症症状,包括仅在精神分裂症中出现的视觉和听觉症状。此外,与 NMDA 受体和精神分裂症相关的几个基因存在遗传关联。 GABA 模型也被探索,因为篡改与 GABA 相关的细胞已被证明会诱发精神分裂症症状,尽管这可以解释为与谷氨酸模型的结合,而不是对立。单独考虑时,这些假设是有缺陷的。多巴胺模型无法解释负面的精神分裂症症状,针对多巴胺受体的药物仍然无法完全减轻自我报告的症状。同样,谷氨酸模型可能是由不规则的 GABA 量引起的,谷氨酸假说也可能解释针对多巴胺的治疗的积极作用。有证据表明,导致 NMDA 受体功能下降的药物会导致多巴胺功能障碍。结合多巴胺和谷氨酸参与的有力证据,最合理的模型是 NMDA 功能障碍导致 GABA 和多巴胺受体问题。
在出生后的前两周,啮齿动物的神经元内氯离子浓度逐渐下降,导致 GABA 反应从去极化转变为高极化。在神经发育障碍的啮齿动物模型和人类患者中,出生后的 GABA 转变会延迟,但 GABA 转变延迟对发育中大脑的影响仍不清楚。在这里,我们通过用氯离子输出蛋白 KCC2 的特异性抑制剂 VU0463271 处理 6 至 7 日龄小鼠的器官型海马培养物 1 周,研究了出生后 GABA 转变延迟对网络发育的直接和间接影响。我们证实了 VU 治疗延迟了 GABA 转变并使 GABA 信号去极化直到 DIV9。我们发现 VU 治疗后 DIV9 时的兴奋性和抑制性突触的结构和功能发育没有受到影响。与之前的研究一致,我们观察到 GABA 信号在对照组和 VU 处理的出生后切片中已经受到抑制。令人惊讶的是,在 VU 治疗结束 14 天后(DIV21),我们观察到 CA1 锥体细胞中自发抑制性突触后电流的频率增加,而兴奋性电流没有改变。突触数量和释放概率不受影响。我们发现,与对照切片相比,放射层中以树突为靶向的中间神经元具有升高的静息膜电位,而锥体细胞的兴奋性较低。我们的结果表明,去极化 GABA 信号不会促进 P7 后的突触形成,并表明出生后细胞内氯离子水平以细胞特异性的方式间接影响膜特性。
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激,可安全地调节大脑兴奋性并具有对许多疾病的治疗潜力。多项研究表明,初级运动皮层 (M1) 的阳极 tDCS 有助于运动学习和可塑性,但有关其潜在机制的信息很少。使用磁共振波谱 (MRS) 已显示 tDCS 可影响成人局部的 γ -氨基丁酸 (GABA) 和 Glx(谷氨酸和谷氨酰胺的总和)水平,这两者都已知与技能习得和可塑性有关;但这尚未在儿童和青少年中进行研究。本研究检测了儿科人群中针对 M1 的常规阳极 tDCS (a-tDCS) 和高清 tDCS (HD-tDCS) 对 GABA 和 Glx 的反应。 24 名正常发育的右利手儿童(年龄 12-18 岁)连续五天参加 tDCS 干预(假干预、a-tDCS 或 HD-tDCS),针对右侧 M1,同时用左手进行精细运动任务(Purdue Pegboard Task)训练。在方案之前和之后(第 5 天和第 6 周),使用 PRESS 和 GABA 编辑的 MEGA-PRESS MRS 序列测量感觉运动皮质中的 Glx 和 GABA。6 周时,HD-tDCS 组左侧感觉运动皮质测得的 Glx 高于 a-tDCS 和假干预组(p = 0.001)。在任何时候均未观察到任何感觉运动皮质中的 GABA 变化。这些结果表明 a-tDCS 或 HD-tDCS 都不会局部影响发育大脑中的 GABA 和 Glx,因此它可能在成人中表现出不同的反应。