β-Gallium氧化物(β-GA 2 O 3)是一种宽带gap的半子导管,具有潜在的高频和高功率设备。[1 - 3]在Ga 2 O 3的五个多晶型物中,β -ga -ga 2 O 3是最稳定的。[4]它具有单斜结构,属于c 2 / m的空间组。[5]为简单起见,ga 2 o 3表示以下文本中的β -ga 2 o 3。随着GA 2 O 3外延技术的发展,两英寸的GA 2 O 3底物已商业化,[6],使用SN或SI的N型掺杂技术已经成熟。[1] GA 2 O 3设备织物和P型掺杂技术是当前GA 2 O 3研究中的两个主要问题。很难以纯GA 2 O 3结晶形式分离不同的相。[7]因此,模拟和填充已被用于预测GA 2 O 3晶体和降低特性。例如,他等人。通过密度功能理论(DFT)计算了频带结构。[5] Osipov等。计算了结构和弹性塑性特性,包括杨的模量和线性可压缩性。但是,直到现在,基于有限元方法的GA 2 O 3设备模拟已经稀缺了,这主要是因为GA 2 O 3不是Ma-Jor设备仿真软件中良好的半导体材料,并且宽带式半径模拟的模拟很难融合。[9]
图:https://www.tf.uni-kiel.de/matwis/amat/mat/semi_en/kap_2/kap_2/backbone/r2_1_5.html M. Xu,D。Wang,K。Fu,D。牛津开放材料科学,第1卷。2,不。1,p。 itac004,2022。
*通讯作者:Muyi Yang,固态物理研究所,弗里德里希·席勒大学Jena,Max-Wien-Platz 1,07743 Jena,德国;弗里德里希·席勒(Friedrich Schiller)大学Jenafriedrich Schiller大学耶拿(Jena),Albert-Einstein-STR的ABBE光子学中心应用物理学研究所。15,07745德国耶拿;和Max Planck Photonics,Hans-Knöll-Straße1,07745德国Jena,电子邮件:muyi.yang@uni-jena.de。https://orcid.org/0000-0002-1738-4536 Maximilian A. Weissflog,应用物理研究所,Abbe Photonics,Friedrich Schiller University,Albert-Einstein-STR。15,07745德国耶拿;以及汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena),麦克斯·普朗克(Max Planck)光子学院。https://orcid.org/0000-0002-3091-1441 Zlata Fedorova,固态物理研究所,弗里德里希·施莱尔·史列尔(Friedrich Schiller Uni-Cersity Jena),Max-Wien-Platz 1,07743 Jena,德国Jena,德国;和应用物理研究所,Abbe光子学中心,弗里德里希·席勒大学(Friedrich Schiller)大学耶拿,阿尔伯特·恩斯坦 - 斯特(Albert-Einstein-STR)。15,07745德国耶拿,安吉拉·贝雷达(Angela I. Barreda),固态物理研究所,弗里德里希·席勒(Friedrich Schiller Uni-Cersity),耶拿(Jena),马克斯 - 韦恩·普拉茨(Max-Wien-Platz)1,07743德国耶拿(Jena);弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。15,07745德国耶拿;以及AVDA马德里大学卡洛斯三世分校的展示和光量应用程序。de la大学,30岁,莱加纳,28911马德里,西班牙,斯特凡·伯纳,应用物理研究所,阿贝·光子学院,弗里德里希·席勒大学耶拿,阿尔伯特·史特恩·斯特林。15,07745德国耶拿;和麦克斯·普朗克(Max Planck)摄影学院,汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena)15,07745 Jena,Ger-许多Falk Eilenberger和Thomas Pertsch,Applied Physics研究所,Abbe Photonics,弗里德里希·席勒大学Jena,Albert- Einstein-STR。15,07745德国耶拿; Max Planck Photonics,Hans-Knöll-Straße1,07745 Jena,德国;和弗劳恩霍夫(Fraunhofer)应用光学和精密工程IOF,Albert-Einstein-Straße7,07745 Jena,德国伊萨贝尔·斯塔德(Isabelle Staude),固体状态研究所,弗里德里希·施莱尔·施莱尔·席勒(Friedrich Schiller Uni-Versity)弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。
志勇、苍怀兴和杨鑫 2020. 基于薄膜氮化镓 (GaN) 的声流体镊子:建模和微粒操控。超声波 108,106202。10.1016/j.ultras.2020.106202
Frederik Dostal 是一位电源管理专家,在该行业拥有 20 多年的经验。在德国埃尔朗根大学学习微电子学后,他于 2001 年加入美国国家半导体公司,担任现场应用工程师,在客户项目中实施电源管理解决方案方面积累了丰富的经验。在国家半导体公司任职期间,他还在美国亚利桑那州凤凰城工作了四年,担任应用工程师,从事开关电源工作。2009 年,他加入 ADI 公司,此后担任过各种职位,负责产品线和欧洲技术支持,目前作为电源管理专家,为公司带来广泛的设计和应用知识。Frederik 在德国慕尼黑的 ADI 办事处工作。
本文通过将模拟设置校准到垂直无结多栅极晶体管实验数据,介绍了先进的 β -Ga 2 O 3 TCAD 模拟参数和方法。通过仔细校准,确定了几个重要的 β -Ga 2 O 3 器件物理特性。研究了补偿掺杂和掺杂剂不完全电离的影响。使用了可以捕捉温度效应的电子飞利浦统一载流子迁移率 (PhuMob) 模型。我们还表明,界面陷阱可能对非理想亚阈值斜率 (SS) 不起作用,短沟道效应是 SS 退化的主要原因。我们还讨论了无结 Ga 2 O 3 晶体管的击穿机制,并表明其受到关断状态下沟道穿通的限制。校准后的模型与实验的电容-电压 (CV) 和电流-电压 (IV) 很好地匹配,可用于预测新型 β -Ga 2 O 3 器件的电性能。 © 2020 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/ab7673]
在其固态上坚硬,可以刺穿软生物组织。然而,当凝胶在插入后遇到体温时会融化,将其转化为像周围组织这样的柔软状态,并允许稳定的药物输送[7]。新的新兴耐甘油针的使用降低了损害血管壁的可能性,它允许患者在注射部位无痛地移动。这是通过针的可调节刚度使其可行的,这使其由于温度环境增加而插入体内时柔软而柔软。薄壁静脉的运动由针头调节。由于畸形的针头即使从注射部位撤回后仍会永久柔软,因此预计还可以防止通过无意的针头杆损伤或不道德的注射器重用带来的血液传播疾病感染[8]。
与任何其他简单的液体不同,超冷液体GA是一种复杂的液体,具有共价和金属炭。[2]元素GA形成同素[3-5]及其低熔化温度(29.8°C)的能力使其成为具有高温和电导率的无毒金属材料。[6]在1952年,F.C。坦率地假设,在由大致球形对称性的原子组成的超冷液体中,二十面体短距离阶在能量上有利。[7,8]对于Dectes,超冷液体GA中的异常结构有序在科学社区中引起了极大的关注。在以前的尝试中描述了液体GA,TSAY和WANG [9]的异常特性时,在GA的四面体上报道了由两个二聚体相互互锁的四二二聚体 - 具有四个带有四个原子的指数。与其他邻居相比,最近的邻居原子之一的键长具有更长的键长,因此四面体是不对称的。在短寿命的共价GA二聚体的情况下,键长的长度接近2.44Å是归因于从摩尔圆形动力学模拟中观察到的结构肩部。[2]但是,在群集结构中的GA – GA对分离大于2.5Å,更有可能
近年来,氮化镓 (GaN) 高电子迁移率晶体管 (HEMT) 受到航天电子界越来越多的关注。尽管 GaN 的电子质量优于 Si,电子迁移率更高,热导率优于砷化镓 (GaAs),但后者的辐射硬度研究已有数十年 [1],并且普遍得到充分了解。航天电子设备面临的主要威胁之一是重离子轰击引起的单粒子效应 (SEE)。虽然大多数此类事件是由银河宇宙射线 (GCR) 造成的,但这些粒子的能量通常比实验室环境中产生的更高。作为一种折衷方案,人们使用低能离子来产生类似的效果。通过这些重离子测试,结合工程控制和统计模型,通常可以可靠地预测电子设备的辐射硬度。在过去的 15 年里,人们对 GaN 设备 [2-7] 的 SEE 和位移损伤剂量 (DDD) 进行了广泛的研究和测试。不幸的是,即使是这些低能量重离子也只有全球少数几家工厂生产。一种更常见的高能粒子是质子。在医疗行业中,约 200 MeV 的质子被大量用于治疗和诊断目的,与重离子相比,它相对容易获得 [8]。许多研究
摘要 - 在1030 nm波长附近的运行的主动循环集成技术已在炮码(GAAS)光子集成电路平台上开发。该技术利用量子井(QW)稍微垂直从波导的中心偏移,然后在上覆层再生之前有选择地去除以形成主动和被动区域。活性区域由砷耐加仑(INGAAS)QWS,砷耐磷化物(GAASP)屏障,GAAS单独的配置异质结构层和铝铝(Algaas)甲板组成。Fabry Perot激光器具有各种宽度和表征,表现出98.8%的高注射效率,内部活跃损失为3.44 cm -1,内部被动损失为3 µm宽波导的4.05 cm -1。3 µm,4 µm和5 µm宽的激光器在100 MA连续波(CW)电流(CW)电流和阈值电流低至9 mA时显示出大于50 MW的输出功率。20 µm宽的宽面积激光器在CW操作下显示240 MW输出功率,35.2 mA阈值电流,低阈值电流密度为94 A/cm 2,长2 mm。此外,这些设备的透明电流密度为85 A/cm 2,良好的热特性具有T 0 = 205 K,Tη= 577K。