秀丽隐杆线虫的内胚层特征化通过一个网络进行,在该网络中,母系提供的 SKN-1/Nrf 和来自 POP-1/TCF 的额外输入激活了 GATA 因子级联 MED- 1,2 → END-1,3 → ELT-2,7。MED、END 和 ELT-7 因子的直系同源物只存在于与秀丽隐杆线虫密切相关的线虫中,这引出了一个问题:在该属中较远的物种中,在没有这些因子的情况下,肠道是如何特征化的。我们发现 GATA 因子基因 elt-3 的 C. angaria、C. portoensis 和 C. monodelphis 直系同源物在早期 E 谱系中表达,刚好早于它们的 elt-2 直系同源物。在 C. angaria 中,Can-pop-1(RNAi)、Can-elt-3(RNAi) 和 Can-elt-3 无效突变导致渗透性“无肠”表型。Can-pop-1 是 Can-elt-3 激活所必需的,表明它作用于上游。在 C. elegans 中强制早期 E 谱系表达 Can-elt-3 可以指导 Can-elt-2 转基因的表达并拯救 elt-7 end-1 end-3; elt-2 四重突变菌株的生存能力。我们的研究结果表明,隐杆线虫肠道特化和分化的祖先机制涉及更简单的 POP-1 → ELT-3 → ELT-2 基因网络。
本次会议是公开发布的,向北约国家,北约机构和Sto开放,增强了机会伙伴(澳大利亚和日本),地中海对话国家,奥地利,波斯尼亚,波斯尼亚和黑塞哥维那,爱尔兰,韩国,新西兰,新西兰,瑞士,瑞士和乌克兰的行政官22.3 36(0.36) 80 IST STC执行助理Armelle Dutruc电话:+33(0)1 55 61 22 82 ist@cso.nato.int.int
简介:患有唐氏综合症 (DS) 或 21 三体综合症 (T21) 的儿童罹患暂时性异常髓系造血 (TAM) 和唐氏综合症急性巨核细胞白血病 (ML-DS) 的风险较高 (1, 2)。TAM 是一种新生儿前白血病,由胎儿时期 T21 与 GATA1s 的独特遗传相互作用引起,GATA1s 是关键造血转录因子 GATA 结合蛋白 1 (GATA1) 的 N 端截短异构体。TAM 和 ML-DS 母细胞均以 GATA1 体细胞突变为特征,从而产生 GATA1s (3, 4),但 ML-DS 母细胞还会获得“第三次打击”突变,通常是在表观遗传调节因子或黏连蛋白复合物成员中 (5, 6)。值得注意的是,在缺乏 T21 的个体中,生殖细胞 GATA1s 突变会导致先天性贫血、血小板减少和/或中性粒细胞减少,但与白血病无关 (7, 8),这证实了 GATA1s 和 T21 共同促进白血病的必要性。细胞周期在造血发育过程中受到精确控制。GATA1 已被证实能抑制细胞周期进程和增殖,并通过阻止转录激活因子 E2Fs 与其下游靶标结合来促进造血细胞的终末分化 (9–11)。Rb/E2F 通路对细胞周期调控至关重要,通常受 GATA1 抑制;然而,由于 GATA1 N 端对这种相互作用至关重要,GATA1s 无法抑制激活因子 E2Fs (9–11)。 GATA1 还抑制 GATA2(GATA 结合蛋白 2),GATA2 是一种造血转录因子,对造血干细胞 (HSC) 和巨核细胞扩增至关重要,在 ML-DS 中经常过表达 (12)。由于没有 N 端结构域,GATA1s 无法正确下调 GATA2,导致 HSC 和巨核细胞过度增殖 (13, 14)。
医学遗传学的一个基本问题是遗传背景如何改变突变的表型结果。我们通过关注线虫表皮中表现出干细胞特性的接缝细胞来解决这个问题。我们证明,与接缝细胞命运维持有关的 GATA 转录因子 egl-18 的假定无效突变在夏威夷的 CB4856 分离株中比在布里斯托尔的实验室参考菌株 N2 中更耐受。我们确定了两个分离株之间表型表现力差异的多个数量性状基因座 (QTL)。这些 QTL 揭示了通过增强 Wnt 信号传导来强化接缝细胞命运的隐秘遗传变异。在一个 QTL 区域内,CB4856 中的热休克蛋白 HSP-110 中的单个氨基酸缺失足以改变 Wnt 信号传导和接缝细胞发育,强调保守的热休克蛋白的自然变异可以塑造表型表现力。
等离子体,单核细胞,中性粒细胞或血小板的增殖增加(1、3、4)。大约30%的被诊断为MD的患者最终患有急性髓样白血病(AML)(5)。eVI1首先被鉴定为具有逆转录病毒诱导的髓样恶质的小鼠中生态病毒整合的常见位点(6)。人类EVI1(MECOM)基因位于Chro-Mosome 3Q26上,EVI1的多种同工型在MECOM基因座(7)中编码。3q26染色体的重排,导致EVI1的上调,经常发生在包括MDS,AML和慢性髓样白血病(CML)在内的髓样恶性疾病中(8-10)。MDS,AML和CML具有INV(3)/T(3; 3)重排通常具有相似的病理特征,预后不良(8、11、12)。It was reported that chromosome rear- rangements cause overexpression of EVI1 due to relocation of enhancers, including GATA binding protein 2 (GATA2) enhancer in inv(3)/t(3;3) (q21q26) (13, 14) and MYC super-enhancer in t(3;8) (q26;q24) close to the EVI1 gene (15).EVI1过表达可能发生在没有3染色体重排的MDS患者中。EVI1上调
本演示深入探讨 DNA 分析领域,涵盖 DNA 结构、犯罪现场 DNA 收集、家族 DNA 匹配和德克萨斯州有关 DNA 的法律等主题。内容还包括实验室环境中的 DNA 匹配过程信息,包括 DNA 指纹识别、提取、PCR、STR、电泳和电泳图。为了使学习体验更具吸引力,演示在每张幻灯片旁边都加入了有趣的 GIF,并介绍了涉及 DNA 的真实案例研究。**使用 STR 进行 DNA 分析**在此活动中,您将深入了解 DNA 分析以及如何将其应用于解决各种案例。您可能会惊讶于您在课堂上获得的知识如何具有实际应用!图 1 中的 STR 序列由 GATAGATAGATAGATAGATAGATA 表示。然而,由于大重复的复杂性,科学家使用一种简写符号,其中重复单元放在括号中,下标表示其重复的次数。例如,STR 序列将表示为 [GATA]6。 DNA 分析或基因指纹分析涉及分析同一物种内个体之间的 DNA 变异,以确定独特特征。该过程有多种应用,包括法医学、亲子鉴定、历史调查以及识别事故和灾难的受害者。大多数个体的遗传物质几乎相同,但确实存在差异,特别是在基因组的非编码区域。这些变异不太可能影响个体的表型,因此更适合进行 DNA 分析。该过程使用一种称为短串联重复序列 (STR) 的 DNA 变异类别。STR 由在整个基因组的不同位置重复多次的碱基单元组成。每个 STR 都有多个等位基因或变体,由存在的重复单元数或序列长度定义。STR 周围的侧翼区域也很重要,因为它们使遗传学家能够使用聚合酶链反应 (PCR) 扩增分离 STR。DNA 分析基础知识 同一物种中的大多数人,包括人类,都有几乎相同的 DNA 序列。然而,整个基因组的特定位置会发生轻微的变化,从而可以进行个体识别。这些基因差异可用于 DNA 分析,以区分不同个体。该技术在法医学、亲子鉴定、历史调查以及事故或灾难受害者识别方面具有实际应用。
[1] Simon Alexanderson,Rajmund Nagy,Jonas Beskow和Gustav Eje Henter。2022。听,denoise,动作!与扩散模型的音频驱动运动合成。ACM图形上的ACM交易(TOG)42(2022),1 - 20。https://api.semanticscholar.org/corpusid:253581728 [2] Maryam Alimardani,Linda Kemmeren,Kazuki Okumura,Kazuki Okumura,kazuki Okumura和Kazuo Hiriraki。2020。机器人辅助的正念实践:神经物理 - 逻辑反应和情感状态变化的分析。2020 29届IEEE机器人和人类互动交流国际会议(RO-MAN)(2020),683–689。https://api.semanticscholar.org/corpusid:221104010 [3] Minja Axelsson,Micol Spitale和Hatice Gunes。 2023。 机器人教练在公共咖啡馆提供小组正念练习。 2023 ACM/IEEE人类机器人互动国际会议的同伴(2023)。 https://api.semanticscholar.org/corpusid:257406411 [4] Indu Prasad Bodala,Nikhil Churamani和Hatice Gunes。 2021。 远程手工的机器人教练进行正念训练:一项纵向研究。 2021第30 IEEE机器人与人类互动沟通国际会议(RO-MAN)(2021),939–944。 https://api.semanticscholar.org/ coldusid:237297069 [5] Indu Prasad Bodala和Hatice Gunes。 2021。 在纵向正念训练期间,动态的贝叶斯网络建模对用户的影响和对遥控机器人教练的看法。 ARXIV ABS/2112.02017(2021)。 https://api.semanticscholar.org/corpusid:244896131 [6] Jiaee Cheong,Micol Spitale和Hatice Gunes。 2023。https://api.semanticscholar.org/corpusid:221104010 [3] Minja Axelsson,Micol Spitale和Hatice Gunes。2023。机器人教练在公共咖啡馆提供小组正念练习。2023 ACM/IEEE人类机器人互动国际会议的同伴(2023)。https://api.semanticscholar.org/corpusid:257406411 [4] Indu Prasad Bodala,Nikhil Churamani和Hatice Gunes。 2021。 远程手工的机器人教练进行正念训练:一项纵向研究。 2021第30 IEEE机器人与人类互动沟通国际会议(RO-MAN)(2021),939–944。 https://api.semanticscholar.org/ coldusid:237297069 [5] Indu Prasad Bodala和Hatice Gunes。 2021。 在纵向正念训练期间,动态的贝叶斯网络建模对用户的影响和对遥控机器人教练的看法。 ARXIV ABS/2112.02017(2021)。 https://api.semanticscholar.org/corpusid:244896131 [6] Jiaee Cheong,Micol Spitale和Hatice Gunes。 2023。https://api.semanticscholar.org/corpusid:257406411 [4] Indu Prasad Bodala,Nikhil Churamani和Hatice Gunes。2021。远程手工的机器人教练进行正念训练:一项纵向研究。2021第30 IEEE机器人与人类互动沟通国际会议(RO-MAN)(2021),939–944。https://api.semanticscholar.org/ coldusid:237297069 [5] Indu Prasad Bodala和Hatice Gunes。2021。在纵向正念训练期间,动态的贝叶斯网络建模对用户的影响和对遥控机器人教练的看法。ARXIV ABS/2112.02017(2021)。https://api.semanticscholar.org/corpusid:244896131 [6] Jiaee Cheong,Micol Spitale和Hatice Gunes。 2023。https://api.semanticscholar.org/corpusid:244896131 [6] Jiaee Cheong,Micol Spitale和Hatice Gunes。2023。“这不公平!” - 多模式二元心理健康教练的小数据集的公平性。2023第11届国际情感计算与智能互动会议(ACII)(2023),1-8。https://api.semanticscholar.org/corpusid:263677413 [7] Kerstin Denecke,Sayan Vaaheesan和Aaganya Arulnathan。2020。一种用于调节情绪的心理健康聊天机器人(SERMO) - 概念和可用性测试。IEEE交易在计算9(2020),1170–1182中的新兴主题。https://api.semanticscholar.org/corpusid:213810982 [8] Ning Fang,Chao Zhang,Supraja Sankaran和Shaoya Ren。 2022。 社会辅助机器人在减少焦虑和保留儿童的自治方面的作用。 2022 17th ACM/IEEE人类机器人互动国际会议(HRI)(2022),754–759。 https://api.semanticscholar.org/corpusid:247619375 [9] Asma Ghandeharioun,Daniel J. McDuff,Mary Czerwinski和Kael Rowan。 2018。 Emma:一种情感意识的健康聊天机器人。 2019第八届情感计算与智能互动会议(ACII)(2018),1-7。 https://api.semanticscholar.org/corpusid:198179485 [10] Ariel Gjaci,Carmine Tommaso Recchiuto和Antonio Sgorbissa。 2022。 朝着文化意识的社会机器人手势。 国际社会机器人学杂志14(2022),1493 - 1506年。https://api.semanticscholar.org/corpusid:249353761 [11]和辛西娅·林恩(Cynthia Lynn)Breazeal。 2020。 2023。 2023。https://api.semanticscholar.org/corpusid:213810982 [8] Ning Fang,Chao Zhang,Supraja Sankaran和Shaoya Ren。2022。社会辅助机器人在减少焦虑和保留儿童的自治方面的作用。2022 17th ACM/IEEE人类机器人互动国际会议(HRI)(2022),754–759。https://api.semanticscholar.org/corpusid:247619375 [9] Asma Ghandeharioun,Daniel J. McDuff,Mary Czerwinski和Kael Rowan。2018。Emma:一种情感意识的健康聊天机器人。2019第八届情感计算与智能互动会议(ACII)(2018),1-7。https://api.semanticscholar.org/corpusid:198179485 [10] Ariel Gjaci,Carmine Tommaso Recchiuto和Antonio Sgorbissa。 2022。 朝着文化意识的社会机器人手势。 国际社会机器人学杂志14(2022),1493 - 1506年。https://api.semanticscholar.org/corpusid:249353761 [11]和辛西娅·林恩(Cynthia Lynn)Breazeal。 2020。 2023。 2023。https://api.semanticscholar.org/corpusid:198179485 [10] Ariel Gjaci,Carmine Tommaso Recchiuto和Antonio Sgorbissa。2022。朝着文化意识的社会机器人手势。国际社会机器人学杂志14(2022),1493 - 1506年。https://api.semanticscholar.org/corpusid:249353761 [11]和辛西娅·林恩(Cynthia Lynn)Breazeal。2020。2023。2023。机器人积极的心理学教练,可改善大学生的福祉。2020年第29届IEEE机器人和人类互动交流国际会议(RO-MAN)(2020),187- 194年。https://api.semanticscholar.org/corpusid:221534231 [12] Sooyeon Jeong,Laura Aymerich-Franch,Sharifa Alghowinem,Rosalind W. Picard,Picard,Picard,Cynthiaynnn Lynn Breazeal和Hae Won Park。心理健康的机器人伴侣:对陪伴和治疗联盟的长期研究。2023 ACM/IEEE人类机器人互动国际会议的会议记录(2023)。https://api.semanticscholar.org/corpusid:257430665 [13] Harsh Kumar,Yiyi Wang,Jiakai Shi,Ilya Musabirov,Norman A. S. S. S. S. Farb和Joseph Jay Williams。探索使用大型语言模型来提高正念意识。在计算系统中2023 CHI人为因素会议的扩展摘要(2023)。https://api.semanticscholar.org/corpusid:258217807 [14] Kayla Matheus,Ellie Mamantov,MarynelVázquez和Brian Scassellati。 2023。 深呼吸阶段分类,具有社交机器人的心理健康。 第25届国际多模式互动会议会议录(2023)。 https://api.semanticscholar.org/corpusid:263742971 [15] Kayla Matheus,MarynelVázquez和Brian Scassellati。 2022。 通过深呼吸来减轻焦虑的社交机器人。 2022 31届IEEE机器人和人类互动交流国际会议(RO-MAN)(2022),89-94。 https://api.semanticscholar.org/corpusid:251673077 [16] Aurea Bravo Perucho和Maryam Alimardani。https://api.semanticscholar.org/corpusid:258217807 [14] Kayla Matheus,Ellie Mamantov,MarynelVázquez和Brian Scassellati。2023。深呼吸阶段分类,具有社交机器人的心理健康。第25届国际多模式互动会议会议录(2023)。https://api.semanticscholar.org/corpusid:263742971 [15] Kayla Matheus,MarynelVázquez和Brian Scassellati。 2022。 通过深呼吸来减轻焦虑的社交机器人。 2022 31届IEEE机器人和人类互动交流国际会议(RO-MAN)(2022),89-94。 https://api.semanticscholar.org/corpusid:251673077 [16] Aurea Bravo Perucho和Maryam Alimardani。https://api.semanticscholar.org/corpusid:263742971 [15] Kayla Matheus,MarynelVázquez和Brian Scassellati。2022。通过深呼吸来减轻焦虑的社交机器人。2022 31届IEEE机器人和人类互动交流国际会议(RO-MAN)(2022),89-94。https://api.semanticscholar.org/corpusid:251673077 [16] Aurea Bravo Perucho和Maryam Alimardani。https://api.semanticscholar.org/corpusid:251673077 [16] Aurea Bravo Perucho和Maryam Alimardani。2023。中等教育中的社会机器人:机器人可以帮助年轻成人学习者进行数学学习吗?2023 ACM/IEEE人类机器人互动国际会议的同伴(2023)。https://api.semanticscholar.org/corpusid:257406249 [17] Nicole L. Robinson,Jennifer F. Connolly,Gavin Suddrey和David John John Kavanagh。2023。人类社会机器人提供的简短福祉培训课程:一项飞行员随机对照试验。国际社会机器人学杂志(2023),1-15。https://api.semanticscholar.org/corpusid: