使用小鼠ICM胚胎Beatrice F. Tan 1,Olivier J.M.Schäffers1,2,Sarra Merzouk 1,Eric M. Bindels 3,Danny Huylebroeck 4,Joost Gribnau 1,4,CathérineDupont1,†, * 1 1 1 1, * 1 1, * 1,荷兰鹿特丹,伊拉斯mus大学医学中心,伊拉斯特大学医学中心。2荷兰鹿特丹伊拉斯mus大学医学中心妇产科和胎儿医学系。3荷兰鹿特丹伊拉斯mus大学医学中心血液学系。4荷兰鹿特丹伊拉斯mus大学医学中心的细胞生物学系。†最后一位作者。*通讯作者:c.dupont@erasmusmc.nl。抽象的基于干细胞的胚胎模型是研究早期胚胎发生的有希望的替代方法。我们介绍了两个不同的模型,以复制小鼠胚胎发育过程中胚胎内胚层和epiblast之间的动力学。诱导性GATA6(I GATA6)胚胎体(EB),仅源自I GATA6胚胎干细胞(ES)细胞,对于对原始内胚层的位置依赖性发展进行建模非常有价值。内部细胞质量(ICM)胚胎,相反,通过汇总“野生型”和i GATA6 ES细胞形成,准确,以可比的PACE模拟在E7.5到E7.5的体内发育中的相当PACE模拟。值得注意的是,ICM胚胎模型细胞分类,并通过玫瑰花结状阶段,将层级从幼稚到启动多能的过渡。此外,在该模型中缺乏胚胎外胚层样细胞,将表皮和内脏内胚层引导到前发育的命运。因此,I GATA6 EB和ICM胚胎是在小鼠早期胚胎发育过程中对细胞命运决策的理解的强大工具。引言小鼠的植入前发育标志着两个细胞命运决策,每种都会导致谱系隔离[1]。在胚泡中,第一个隔离发生在胚胎第3-3.5(e3-e3.5)的情况下,并形成了滋养型剂(TE)和内部细胞质量(ICM)。随后在ICM中随后发生了第二个隔离,并形成了原始内胚层(PRE,低纤维细胞)和层细胞。在第二个决策中运行的机制涉及位置效应,细胞分选和凋亡。随着发育的进展,PRE不仅形成顶叶内胚层,还会产生内脏内胚层(VE),当后者从幼稚到启动的多能状态过渡时,围绕着层状的内胚层(VE)。pre/ve与层细胞之间的细胞间通信以及对其的相互解释调节了这两个谱系中每一个的发展。然而,沿子宫中小鼠小鼠胚胎的差可及性,了解胚胎发生的这些阶段的参与者和基因调节网络的变化受到了复杂,重叠和冗余的分子机制的阻碍。基于干细胞的胚胎模型已成为研究哺乳动物胚胎早期发育的有吸引力的替代方法,但并非没有局限性。类囊体的发育潜力较差,因为它们的PRE(E3.5-E4)的形成仍然很困难,并且取决于各种培养添加剂[2,11]。小鼠整合性胚胎模型,例如胚胎[2-4]和ETX胚胎[5-10],它们分别模拟了植入前和植入后发育,无法准确复制E3-E5.5之间的体内发育阶段。ETX胚胎在发育的特定阶段仍处于装配模式,因此对于从E5.5开始建模和研究胚胎发生最有用。此外,在这两个综合胚胎模型中达到高效率都构成了重要的
胰腺导管腺癌(PDAC)中的摘要尚未发现复发转移特异性突变,这表明表观遗传机制(例如DNA甲基化)是晚期疾病进展的主要贡献者。在这里,我们在小鼠和人类PDAC类器官模型上进行了第一个全基因组纤维纤维测序(WGB),以鉴定特异性和分子亚型特异性DNA甲基化特征。使用这种方法,我们识别了数千种差异化甲基化的(DMR),它们可以区分PDAC的阶段和分子亚型。阶段特定的DMR与与神经系统发育和细胞粘附相关的基因相关,并富含启动子和二价增强子。亚型特异性DMR显示出鳞状亚型中的GATA6前胚层转录网络的过度甲基化和祖细胞亚型中EMT转录网络的过度甲基化。这些结果表明,异常的DNA甲基化构成有助于PDAC的进展和亚型分化,从而产生了具有诊断和预后潜力的显着和重复的DNA甲基化模式。
先天性心脏缺陷 GATA6 0.174 3 2 0 0 0 2.5×10 -5 3.5×10 -6 KMT2A 0.065 5 0 1 0 0 3.2×10 -4 5.0×10 -5 ADNP 0.123 4 0 0 0 1 5.8×10 -4 3.1×10 -4 KDM5B a 0.572 4 0 0 2 4 0.012159 5.2×10 -4 NR2F2 0.217 2 1 0 0 0 0.014122 0.002103 FOXP1 a 0.175 2 1 0 0 0 0.029404 0.003100 TBX5 0.135 1 1 0 1 0 0.031389 0.053298 GATA4 0.527 2 0 0 2 1 0.040077 0.050796 TCF12 0.372 1 1 0 2 1 0.051542 0.068473 ZEB2 0.107 1 1 0 1 0 0.058741 0.131609 KLF2 a 0.710 1 1 0 0 0 0.204573 0.032261 SMAD4 0.222 0 2 0 0 0 0.209108 0.035057 MEIS2 a 0.184 2 0 0 0 0 0.271015 0.055872 CTCF a 0.148 0 2 0 0 0 0.278293 0.058374 颌面裂 SATB2 0.091 7 5 0 0 0 3.86×10 -14 5.77×10 -15 TFAP2A 0.261 2 3 0 1 0 2.84×10 -6 7.70×10 -6 CTCF b 0.148 0 3 0 0 0.011737 0.001484 IRF6 0.132 1 0 3 1 0 0.002951 0.007637 TP63 0.267 1 1 0 3 0 0.003631 0.072430 SOX5 b 0.188 1 1 0 1 0 0.018728 0.058691 ADNP b 0.123 2 0 0 0 1 0.092444 0.088307 GRHL2 b 0.270 2 0 0 0 0 0.328840 0.076571 213
先天性心脏病 (CHD) 是造成大量发病率和死亡率的原因,但尽管心脏异常有影响,但其病因仍不太清楚。先前的证据表明遗传机制在 CHD 中发挥作用,最近的数据表明,参与胚胎发育的关键基因 NR2F2 在人类疾病中发挥作用。据推测,NR2F2 是参与心脏发生的分子网络的一部分,对它的研究可以阐明与心脏发育相关的 NR2F2 网络。先前未发表的数据显示,发育中的人类心脏的成纤维细胞和内皮细胞表达 NR2F2 mRNA。基因组编辑模型中的转录组分析使得能够研究基因表达模式和转录因子作为通路和基因组网络的调节剂。我们旨在通过在原代心脏成纤维细胞中敲除 NR2F2 的转录来研究其作用,并通过单细胞 RNA 测序进一步分析随之而来的整体转录组变化。我们从人类胎儿心脏样本中分离出原代迁移细胞,并通过流式细胞术和单细胞 RNA 测序对其进行了鉴定。我们还评估了这些细胞中 NR2F2 转录本和蛋白质的表达,然后针对 CRISPR/Cas9 优化了方案。我们使用核糖核蛋白 (RNP) 系统敲低了成纤维细胞中的 NR2F2,然后在敲低样本和对照样本中进行基于液滴的单细胞 RNA 测序,以比较 NR2F2 缺失引起的扰动。将生物信息学流程应用于类似的公开可用的心脏细胞数据集以进行比较。这些流程包括已知的用于基因表达分析的批量和单细胞 RNA 测序工具,包括 limma 和 Scanpy。因此,我们可以得出结论,人类胎儿成纤维细胞中 NR2F2 活性降低会干扰几种对心脏发生很重要的心脏基因表达,例如 GATA6 和 HEY1,并且还可能影响其他转录因子的活性,例如 NKX2-5,这些转录因子先前与 CHD 表型有关。
